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We report a fast-track computationally-driven discovery of new
SARS-CoV2 Main Protease (Mpro) inhibitors whose potency
range from mM for initial non-covalent ligands to sub-µM for
the final covalent compound (IC50=830 ± 50 nM). The project
extensively relied on high-resolution all-atom molecular dynamics
simulations and absolute binding free energy calculations per-
formed using the polarizable AMOEBA force field. The study is
complemented by extensive adaptive sampling simulations that
are used to rationalize the different ligands binding poses through
the explicit reconstruction of the ligand-protein conformation
spaces. Machine Learning predictions are also performed
to predict selected compound properties. While simulations
extensively use High Performance Computing to strongly reduce
time-to-solution, they were systematically coupled to Nuclear
Magnetic Resonance experiments to drive synthesis and to in
vitro characterization of compounds. Such study highlights
the power of in silico strategies that rely on structure-based
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approaches for drug design and allows to address the protein
conformational multiplicity problem. The proposed fluorinated
tetrahydroquinolines open routes for further optimization of Mpro

inhibitors towards low nM affinities.

Introduction
Since December 2019, the Covid-19 global pandemic has put the
entire world on edge.1,2 The disease is due to a coronavirus (CoV)
called SARS-CoV-2 (severe acute respiratory disease, SARS) that
has triggered the start of an unprecedented research effort.3–5

While the vaccination strategy6 has been particularly success-
ful with the rise of mRNA techniques, additional programs have
been launched to obtain antivirals able to reduce the impact of
COVID19 on ill patients. Despite these efforts, few potential treat-
ments are presently available at the exception of the Paxlovid,
a nirmatrelvir/ritonavir combo proposed by Pfizer.7 Due to the
persistence of the pandemic, it remains essential to propose new
antiviral drugs. A possible strategy consists in designing small
molecules to interact with one of the main proteins of SARS-Cov2
virus, thus blocking its activity. Among the potential targets, the
main protease protein, denoted as Mpro or 3CLpro, is a primary
choice8 as it has no human homolog and it is well conserved
among coronaviruses,9 especially in terms of the structure of its
active site, catalytic dyad, and dimer interface. Furthermore, Mpro

is required to release viral proteins for particle assembly, and is
thus essential to the virus replication cycle.

Developing a new drug targeting the viral Mpro is challenging
as it requires extensive resources and the rate success is notori-
ously low.10 Relying on in silico driven rational design could ac-
celerate the process. In fact, it diminishes the cost by reducing
the need for synthetic iterations while also providing an inter-
pretation of the interactions occurring between the target protein
and potential inhibitors.

It is important to note that theoretical modeling of Mpro is chal-
lenging as the protein exhibits a high structural flexibility11–13

leading to a high conformational complexity. Mpro is also in-
volved in a variety of complex protein-ligand-solvent interaction
networks.12,13 These challenges can be tackled using a high-
resolution modeling approach12,13 going beyond rigid docking
procedures (see reference14 for a detailed discussion of the dif-
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ficulties of docking approaches in predicting the native binding
modes of small molecules within Mpro ).

Many studies have been devoted to the design of new Mpro

inhibitors5,15–17 3,18–25 through joint computational and experi-
mental approaches. In particular, a recent study by the Jorgensen
group highlighted the usefulness of relative binding free energy
computations (RBFE) as part of the drug design process.26

In this paper, we present a computationally-driven discovery
and binding mode rationalization of new SARS-CoV-2 Mpro in-
hibitors. In doing so, we build on our previous high-resolution
Mpro molecular dynamics studies.12,13 Here, we explore more
deeply some specific subpockets of the substrate binding site of
the protease using absolute binding free energy (ABFE) calcu-
lations and adaptive sampling grounded on extensive molecular
dynamics simulations with high-resolution polarizable force fields
(PFF). Using the GPU-accelerated module27 (GPU=Graphics Pro-
cessing Unit) of the Tinker-HP molecular dynamics package28

coupled to the AMOEBA PFF,29–32 it has been shown that simu-
lations can reach the required level of accuracy and µs timescales
needed to explore the structural rearrangement and interactions
profile of this flexible protein.12,13 More precisely, the model-
ing of Mpro necessitates the ability to evaluate at high-resolution
various types of key interactions including hydrogen bonds, salt
bridges, π –π stacking, and specific solvation effects. Long
timescales are required to achieve sufficient sampling. This is now
possible by using the large number of graphics processing units
(GPUs) that are presently available on supercomputers and high-
performance cloud computing platforms. In this study, we com-
bine our computationally-driven strategy, using absolute binding
free energy computations33–37 and unsupervised adaptive sam-
pling,12,13 with machine learning-assisted property predictions,
while providing extensive characterization experiments includ-
ing nuclear magnetic resonance (NMR), mass spectrometry (MS),
and FRET-based assays to evaluate the activity of the newly de-
signed compounds.

In the following, we introduce our design strategy, which led to
non-covalent and covalent inhibitors of Mpro (SI-Figure 1). Then,
we describe how an interplay between experiments and molecu-
lar simulations allowed the discovery of a final compound (QUB-
00006-Int-07) with a high affinity to the protease (IC50=830 ±
50 nM).

Computational details

A. Systems preparation

The protease dimer structure (PDB code: 7L11) was used for
all the MD simulations and it was prepared at physiological
pH (pH=7). This structure has a higher resolution (1.80 Å)
than the PDB structure (PDB code: 6LU7) used in our previous
work12 (resolution of 2.16 Å). Both structures are of the holo
state in complex with covalent inhibitors, and the rotamers of
the key residues at the catalytic site (Cys145, His41, His162,
His163, His172) are virtually identical. The protonation states
of His residues were assigned based on previous work38, where
His41 and His80 are protonated at the delta carbon atom and
all other His residues are epsilon-protonated, which is favorable

for the substrate binding38. This is different from our previous
work where His64 and His80 are protonated at the delta carbon
atom and all other histidines are epsilon-protonated.12 All water
molecules were retained except for those that might collide with
the ligands.

B. Simulations protocols

All-atom simulations were performed using Qubit Pharmaceuti-
cals’ Atlas platform which enables the use of any type of High-
Performance Computing (HPC) systems including cloud super-
computing infrastructures. Among its possibilities, Atlas has the
ability to efficiently handle polarizable force field molecular dy-
namics simulations using a custom version of the multi-GPU mod-
ule27of the Tinker-HP molecular dynamics package28,39, to per-
form docking runs using either Autodock-Vina40 or Autodock-
GPU41, and to enable machine learning predictions of molecular
properties.

B.1. Molecular Dynamics simulations

All Tinker-HP MD simulations (for a total of several µs) were
performed in mixed precision to benefit from a strong accelera-
tion of simulations using GPUs.27 The AMOEBA polarizable force
field29–32 was used to describe the full systems including the pro-
tein, ions and water. Several utilities (TinkerTools) from Tin-
ker 842 were used. Periodic boundary conditions were applied
within the framework of smooth particle mesh Ewald summa-
tion43,44 with a grid of dimensions 120×120×120 using a cu-
bic box with side lengths of 97 Å. The Ewald cutoff was set to 7
Å, and the van der Waals cutoff was 12 Å. Langevin molecular
dynamics simulations were performed using the recently intro-
duced BAOAB-RESPA1 integrator (10 fs outer timestep)45, a pre-
conditioned conjugate gradient polarization solver (with a 10−5

convergence threshold) to solve polarization at each time step46,
hydrogen-mass repartitioning (HMR) and random initial veloci-
ties. Absolute free energy simulations following a protocol de-
scribed in the next section were performed as well as adaptive
sampling runs that are also described further in the text. Absolute
free energy computations were both performed on the HPE Jean
Zay Supercomputer (IDRIS, GENCI, France) and on Amazon Web
Services (AWS). All adaptive sampling computations were per-
formed using AWS. Simulations at AWS used both p3.2x (NVIDIA
V100 GPU cards) and p4d.24xlarge (NVIDIA A100 GPU cards)
instances whereas computations on the Jean Zay supercomputer
were powered by V100 cards.

B.2. Molecular Docking protocol

The protonation states of the ligands were calculated at a neu-
tral pH and the hydrogen atoms were added using Chimera.
Next, we docked the ligands QUB-00006-Int-01(R) and QUB-
00006-Int-01(S) into the Mpro dimer structure using Autodock
Vina 1.1.240. AutoDock Vina requires pdbqt format for the input
files of the receptor and the ligand. Therefore, using the scripts
‘prepare_receptor4.py‘ (v 1.13) and ‘prepare_ligand4.py‘ (v 1.10)
provided by Autodock Tools47, we generated pdbqt files corre-
sponding to the receptor and the ligands, respectively. We set the
exhaustiveness search to 100 and the num_mode option to 50.
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Since molecular docking could suggest reasonable potential bind-
ing modes, but does not always rank the most likely binding mode
as the best docked pose14,48, we visually inspected the generated
docked poses and chose an ensemble of binding poses with dif-
ferent binding orientations that we used to run MD and ABFE
calculations in order to explore the binding mode of QUB-00006-
Int-01, as described in the Results and discussion section.

B.3. Equilibration

A detailed description of the equilibration protocol used for MD
simulations can be found in SI.

B.4. High-resolution Adaptive Molecular dynamics simula-
tions

Starting from several binding poses as described above we ran
adaptive sampling simulations using the AMOEBA force field29–32

in order to explore their stability and more generally to explore
the conformational space of the ligands in the pocket of the Mpro.
Because of the flexibility of the pocket and the role it may play in
the exploration of the potential binding modes of the ligand, we
chose to keep the whole system (ligand+protein) flexible during
this sampling phase. The restart strategy (similar to the one intro-
duced in12) was the following: first, all the previously generated
conformations of the protein were loaded and aligned with MD-
Traj49, then PCAs of the conformations of the ligand were com-
puted using Scikitlearn50 and these frames were projected on the
first four PCAs. Finally, the same scheme as the one described in12

was used to generate new starting points, favoring points that
were less explored during the previous phases. In practice, a first
set of 5 simulations of 10 nanoseconds were done using different
random seeds, then 4 iterations of 10 times 10 nanoseconds were
generated using the adaptive sampling protocol described above,
for a total of 450 nanoseconds.

B.5. Absolute binding free energy calculations

In order to benefit from the high-accuracy evaluation of free en-
ergies using the AMOEBA force field,33–37, we used the same
clustering algorithms as described above to analyze the adaptive
molecular dynamics simulations. The largest clusters were used
for absolute free energy calculations. The double-decoupling pro-
tocol and the Bennett acceptance ratio (BAR)51 method were
used to calculate the standard binding free energy for each bind-
ing pose.33,37 There were 27 or 26 thermodynamic states for the
decoupling in complex phase or the aqueous phase. A distance
restraint between two groups of atoms in the ligand and in the
protein binding pocket was applied when decoupling the ligand
in complex to accelerate the convergence when the ligand is fully
decoupled, and the restraint was removed at an additional step
at the full interaction state. A harmonic restraint with force con-
stant 15.0 kcal/mol/Å2 and radius 2.0 Å was used. An analytic
correction was added to the binding free energy to account for
the standard state at 1.0 mol/L in the fully decoupled state. 10
ns simulations were performed for each thermodynamic state for
the simulations of Mpro in complex with x0195, QUB-00006 (S),
QUB-00006 (R), and QUB-00006-Int-07. For the simulations of

Mpro in complex with QUB-00006-Int-01 (R) and QUB-00006-Int-
01 (S), we ran each thermodynamic state for 20 ns. We used the
BAOAB-RESPA1 integrator with 10 fs timestep and we calculated
the electrostatic interactions using Ewald summation with a real
space cutoff of 7 Å. Van der Waals interactions were calculated
using a cutoff of 12 Å with long-range correction.

C. Quantitative Structure-Property Relationship (QSPR) mod-
eling: predicting solubility using machine learning

Qubit Pharmaceuticals’ Atlas internal machine learning-based
QSPR module was used to predict water solubility (logS Molar)
and octanol/water partition coefficient (logP). To build a water
solubility QSPR predictor, AqSolDB dataset52 was used as a train-
ing set. To predict octanol/water partition coefficients (logP), the
dataset from EPA’s OPERA53 was used as a training set.

Selected datasets were preprocessed and standardized to some
extent by authors of the corresponding publications. However,
the need for additional processing was identified when doing ex-
ploratory data analysis. We discarded compounds with less than
two carbon atoms and kept molecules with molecular weight be-
tween 50 and 750 daltons. Additional rules of fragments stan-
dardization developed at Qubit Pharmaceuticals were applied.

Similarity analysis. Tanimoto similarity54 to the x0195 com-
pound was calculated for each molecule using the MAACS fin-
gerprint from the RDKit Open-Source Cheminformatics Software
(https://www.rdkit.org). The Morgan Circular Fingerprint55

with radius=2 and nBits=2048 from RDKit was also tested and
the results (not shown) have similar ranking of the compounds.

Experimental protocol

A. Recombinant Expression of SARS-CoV-2 Mpro in E. coli

The plasmid pGEX-6P-1 encoding SARS-CoV-2 Mpro 56 was a gen-
erous gift from Prof. Rolf Hilgenfeld, University of Lübeck,
Lübeck, Germany. Protein expression and purification were
adapted from Zhang, et al.56 The expression plasmid was trans-
formed into E. coli strain BL21 (DE3) and then pre-cultured in
YT medium at 37 °C (100 µg/mL ampicillin) overnight. The pre-
culture was used to inoculate fresh YT medium supplied with an-
tibiotic and the cells were grown at 37 °C to an OD600 of 0.6–0.8
before induction of overexpression with 0.5 mM isopropyl-D-
thiogalactoside (IPTG). After 5 h at 37 °C, cells were harvested
by centrifugation (5000 g, 4 °C, 15 min) and frozen. The pellets
were resuspended in buffer A (20 mM Tris, 150 mM NaCl, pH
7.8) supplemented with lysozyme, DNase I and PMSF for the ly-
sis. The lysate was clarified by centrifugation at 12000 g at 4 °C
for 1 h and loaded onto a HisTrap HP column (GE Healthcare)
equilibrated with 98% buffer A/2% buffer B (20 mM Tris, 150
mM NaCl, 500 mM imidazole, pH 7.8). The column was washed
with 95% buffer A/5% buffer B and then His-tagged Mpro was
eluted with a linear gradient of imidazole ranging from 25 mM
to 500 mM. Pooled fractions containing target protein were sub-
jected to buffer exchange with buffer A using a HiPrep 26/10 de-
salting column (GE Healthcare). Next, PreScission protease was
added to remove the C-terminal His tag (20 µg of PreScission
protease per mg of target protein) at 12 °C overnight. Protein
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solution was loaded onto a HisTrap HP column connected to a
GSTtrap FF column (GE Healthcare) equilibrated in buffer A to
remove the GST-tagged PreScission protease, the His-tag, and the
uncleaved protein. Mpro was finally purified with a Superdex 75
prep-grade 16/60 (GE Healthcare) SEC column equilibrated with
buffer C (20 mM Tris, 150 mM NaCl, 1 mM EDTA, 1 mM DTT,
pH 7.8). Fractions containing the target protein at high purity
were pooled, concentrated at 25 mg/ml and flash-frozen in liquid
nitrogen for storage in small aliquots at -80°C.

B. Protein characterization and enzymatic activity

The molecular mass of the recombinant SARS-CoV-2 Mpro was
determined by direct infusion electrospray ionization mass spec-
trometry (ESI-MS) on a Xevo G2-XS QTOF mass spectrometer
(Waters). Samples were diluted in 50% acetonitrile with 0.1%
of formic acid to achieve a final 1 µM concentration of protein.
The detected species displayed a mass of 33796.64 Da, which
matches very closely the value of 33796.81 Da calculated from
the theoretical full-length protein sequence (residues 1-306). To
characterize the enzymatic activity of our recombinant Mpro,
we adopted a FRET-based assay using the fluorogenic substrate
5-FAM-AVLQ` SGFRK(DABCYL)K (Proteogenix) harbouring the
cleavage site of SARS-CoV-2 Mpro (` indicates the cleavage site).
The fluorescence of the intact peptide is very low since the fluo-
rophore 5-FAM and the quencher Dabcyl are in close proximity.
When the substrate is cleaved by the protease, the fluorophore
and the quencher are separated, increasing the fluorescence sig-
nal. Freshly unfrozen recombinant SARS-CoV-2 Mpro was used in
our assays. The assay was performed by mixing 0.05 µM Mpro

with different concentrations of substrate (1-128 µM) in the re-
action buffer (20 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA and
1 mM DTT, pH 7.3) in the final volume of 100 µL. Fluorescence
intensity (Ex = 485 nm/Em = 535 nm) was monitored at 37 °C
with a microplate reader VictorIII (Perkin Elmer) for 50 min. A
calibration curve was created by measuring multiple concentra-
tions (from 0.001 to 5 µM) of free fluorescein in a final volume
of 100 µL reaction buffer. Initial velocities were determined from
the linear section of the curve, and the corresponding relative flu-
orescence units per unit of time (∆RFU/s) was converted to the
amount of the cleaved substrate per unit of time (µM/s) by fit-
ting to the calibration curve of free fluorescein. Inner-filter effect
corrections were applied for the kinetic measurements according
to57. The catalytic efficiency kcat/km resulted in 4819± 399 s-
1M-1, in line with literature data56,58.

C. Nuclear Magnetic Resonance

All the NMR screening experiments were acquired with a
Bruker Neo 600MHz spectrometer, equipped with nitrogen cooled
Prodigy CryoProbe 5mm at 298K. The ligand binding was moni-
tored by WaterLOGSY (wLogsy)59 and Saturation Transfer Differ-
ence (STD)60 experiments in the presence and in the absence of
the protein. Samples contained 10 µM of Mpro and ligand concen-
tration varying from100 µM to 2 mM of ligand dissolved in 150
mM NaCl, 20 mM Phosphate, 5% D2O, 4% DMSO-d6 (pH=7.3).
Water-LOGSY experiments were performed with a 180° inversion

pulse applied to the water signal at 4.7ppm using a Gaussian-
shaped selective pulse of 5ms. Each Water-LOGSY spectrum was
acquired with 320 scans a mixing time of 1.5s and a relaxation de-
lay of 4.5 s. STD experiments were acquired with 256 scans. Se-
lective saturation of the protein at 0.4ppm frequency was carried
out by a 2s pulse train (60 Gaussian pulses of 50ms separated by
1ms intervals) included in the relaxation delay and a 30ms spin-
lock was used to reduce the broad background,protein signal. The
estimation of the KD was achieved by a STD titration according to
previously reported procedure and fitting the curves using Orig-
inPro 2018 (Origin(Pro), Version 2018 by OriginLab Corporation,
Northampton, MA, USA). The water suppression was achieved by
the excitation sculpting pulse scheme.

D. Screening of potential Mpro inhibitors and hits validation

The FRET-based assay employed to test the enzymatic activity of
the recombinant SARS-CoV-2 Mpro was used to evaluate the abil-
ity of the compounds to inhibit its activity in vitro. In fact, inhi-
bition of Mpro by the tested compounds results in a decrease of
the fluorescence signal compared to the Mpro activity in the ab-
sence of an inhibitor. A preliminary screening was first performed
at a single compound concentration to rapidly identify the com-
pounds ability to inhibit Mpro activity and to rank them according
to their inhibitory activity. The protein was diluted in the reaction
buffer (20 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA and 1 mM
DTT, pH 7.3) and pipetted into a 96-well plate to the final protein
concentration of 0.02 µM in a final volume of 100 µL. Each com-
pound at the final concentration of 100 µM was incubated with
Mpro for 20 minutes at room temperature. After incubation, the
peptide substrate (5 µM final) was added to initiate the reaction
which was monitored for 50 min at 37°C. The final DMSO amount
was 3,75%. Two controls were prepared for each experiment: the
peptide substrate in the absence of Mpro (0% Mpro activity, hence
minimal fluorescence intensity detected) and the reaction mix-
ture in the absence of compound (100% Mpro activity, therefore
maximal fluorescence intensity detected). Following the prelimi-
nary screening, the most active compounds (hits) were tested at
increasing concentrations (0.25, 0.5, 1, 5, 25, 50, 100, 150 µM)
to determine the dose-response curves and calculate IC50 values
fitted by using GraphPad Prism 5 software. Each experiment was
performed in triplicate and the results were used to calculate an
average and a standard deviation.

E. Binding studies by Mass Spectrometry

Samples were prepared by mixing appropriate volumes of Mpro

(10 µM final) with each compound in the reaction buffer (20 mM
Tris-HCl, 100 mM NaCl, 1 mM EDTA and 1 mM DTT, pH 7.3).
The final mixtures contained 1:1 or 10:1 of compound:protein
molar ratio. Samples were incubated at room temperature for 20
min before analysis. Control experiments were performed on 10
µM solutions of Mpro in the absence of compound. Mass spectro-
metric analyses were carried out in positive ion mode by ESI-MS
under denaturing conditions i.e. water/acetonitrile 50:50 with
0.1% formic acid on a Q-Tof Xevo G2S (Waters, Manchester, UK).
Data were processed by using MassLynx V4.1 software.
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F. Synthesis
The detailed synthetic protocol used to prepare all molecules can
be found in supplementary information.

Results and Discussion
Several diverse fragments binding the viral Mpro have been iden-
tified by high-throughput crystallographic screening of this pro-
tease. Among the screened fragments, x0195 (PDB ID: 5R8161

- Figure 2A) shows one of the highest binding affinities62 and
therefore provides a reasonable starting point for fragment-based
design of novel Mpro inhibitors.

The crystal structure shows that x0195 is located within the
Mpro substrate binding pocket, at the interface of the two sub-
pockets S2 and S4 as described by Cannalire, et al.63. S4 is a
solvent exposed subpocket that is partially composed by a flexi-
ble loop delimited by Gln189 and Gln192, while S2 is defined by
the side chain residues of Phe140, Asn142, His163, Glu166, and
His172, and the backbone atoms of Phe140 and Leu141.

In the co-crystal structure corresponding to Mpro in complex
with x0195 (see Figure 2A), the aromatic portion of the molecule
is located between the side chains of Gln189 and Met 165, while
the unsaturated region of the tetrahydroquinoline scaffold estab-
lishes a hydrophobic interaction with the side chains of His41 and
Met49. The N-methyl group attached to the tetrahydroquinoline
core is solvent exposed, while the sulfonamide moiety is in con-
tact with Pro168 and Glu166. In particular, the aromatic ring of
the small molecule is bisecting the SO2 unit and the polar sul-
fonamide nitrogen (-NH2) is reaching the boundaries of the hy-
drophobic part of the binding pocket composed by the alkyl chain
of Pro168.

After comparing the available X-ray structural information with
previously conducted studies on small molecule conformational
preferences derived from crystal structure data64, we noticed that
x0195 was modeled in a high energy conformation and that an
unusual high-energy (i.e. repulsive) contact occurs between the
sulfonamide oxygen and the carbonyl oxygen of Glu166 back-
bone. Additionally, the tetrahydroquinoline scaffold was not fully
exploring S2 subpocket boundaries. As reported by Cannalire, et
al.63 and Zhang, et al.8, the volume of the S2 subpocket in SARS-
CoVs Mpro is highly similar to that of the MERS-CoV homologue.
However, the volume of S2 in SAR-CoVs Mpro (252 Å3) is sig-
nificantly larger than in other CoVs’ homologues of the α-genus,
such as the HCoV-NL63 Mpro (45 Å3)8,63. Therefore, exploiting
this knowledge might be key to design specific inhibitors of CoVs
Mpro.

In order to refine the available X-ray structural model and to
gather more structural insights (e.g. protein flexibility and bind-
ing pocket rearrangements12,13) to guide the design of better
binders of the subpocket S2, we ran all-atom molecular dynam-
ics simulations using the AMOEBA polarizable force field29–32

on Mpro (PDB code: 7L11) in complex with x0195 (PDB code:
5R81).

Our simulations show that the unusual high-energy contacts
between the sulfonamide oxygen and the carbonyl oxygen of
Glu166 backbone were released. Also, regarding the electronic
structure, we noticed that the p orbitals of the aromatic carbon

C1 bisect (e.g. are parallel to) the SO2 angle, compared with a
90° value for the same angle as reported in the crystal structure
(see Figure 2). Moreover, the NH2 of the sulfonamide group is en-
gaging in favorable polar interactions with the Gln189 side chain
and the solvent.

Then, we performed absolute binding free energy calculations
on the refined protein-ligand structure. Our results show that
x0195 binds to the protein with a binding free energy of -2.83
kcal/mol at 283 K, which is comparable to the experimental bind-
ing energy (-3.59±0.1 kcal/mol, see Table 1).

Compound Computed ∆G Experimental ∆G
QUB-00006 (R) -2.73 ± 0.34

N.A.
QUB-00006 (S) -2.72 ± 0.22

QUB-00006-Int-01 (R) -4.30 ± 0.35
-3.71 ± 0.2

QUB-00006-Int-01 (S) -4.45± 0.29
x0195 -2.83± 0.66 -3.59 ± 0.1

QUB-00006-Int-07 -5.37±0.23 covalent binder

Table 1 Experimental and computed binding free energies (kcal/mol) for
the non-covalent compounds. N.A.=not available (see text for details).

We obtained the experimental binding free energy by convert-
ing the experimental Kd (1.7 mM ± 0.2) provided in literature62

using the Gibbs free energy equation and the experimental tem-
perature used in the binding assays (283 K). The agreement of the
computed free energy prediction with the experimental results is
reasonable. Further analysis of MD simulations suggests that the
tetrahydroquinoline scaffold of x0195 is sub-optimally occupying
the binding pocket.

We put in place design strategies to modify the chemical moi-
eties of x0195 and potentially increase its binding affinity. Here,
we introduce the design of a new molecule, namely QUB-00006,
where we added two fluorines and a methyl group on the tetrahy-
droquinoline core of x0195. Also, we substituted the sulfonamide
group on the aromatic ring of the molecule by a methanethiol.
Fluorination at position 3 of the tetrahydroquinoline core could
increase ligand occupancy with no disruption of the water net-
work surrounding the binding pocket12,13, while methylation at
position 4 seemed an interesting modification to increase the po-
tential interactions of the ligand with binding pocket residues.
QUB-00006 was generated based on the structure and position of
x0195 in the co-crystal (5R81), then placed in the receptor struc-
ture (Mpro dimer with the PDB code: 71LL); next, the complex
Mpro-QUB-00006 was equilibrated using MD simulations (see SI,
section 1 for the detailed protocol), followed by free energy cal-
culations. To explore the potential of our computational platform
in designing new binders with no or few experimental data such
as ligand-Mpro co-crystal structures, we leveraged all-atom molec-
ular dynamics simulations on QUB-00006 complexed with Mpro.
The aim of this approach is to gather insights on the binding con-
formation of the newly in silico designed ligand, assess pocket
fitness, and evaluate its binding affinity using ABFE calculations.

The initial molecular conformation is mostly anchored at the
binding pocket, with the α,α-difluoro-methyl group attached to
the tetrahydroquinoline core fully occupying the buried part of
the S2 subpocket, which is composed by the side chains of Met49
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Fig. 1 Refinement of the co-crystal structure of x0195 and Mpro using MD simulations. A) An unusual conformation, of x0195 (in purple) located in
the binding pocket formed by His 41, Met 49, Glu 166, Gln 189, and Pro 168 and their surroundings (PDB code: 5R81), and B) the relaxed structure
of x0195 (in purple), obtained after the equilibration step, interacting with the amino acid residues of the substrate binding site. Mpro is shown in
light grey. C) Torsion angle distribution for the sulfonamide group during 20 ns of MD simulations (in blue) performed on Mpro dimer in complex with
x0195 ; the torsion angle of the sulfonamide group in the co-crystal structure is shown in pink. D) Torsion energy scan calculated by AMOEBA (in
blue) and QM (in orange); the torsion angle of the sulfonamide group in the co-crystal structure is shown in pink. QM level=ωB97x-D/6-31g*65–67

and His41, while the sulfonamide moiety extends to S4 (Leu167
and Pro168). We note that methylation at position 4 of the
tetrahydroquinoline core introduces a chiral center, however no
significant differences in terms of pocket occupancy between the
R and S enantiomers were observed.

The computed absolute binding free energies for QUB-
00006(R) and QUB-00006(S) are -2.73±0.34 kcal/mol and -
2.72±0.22 kcal/mol, respectively (Table 1). These results suggest
that the designed fluorinated fragment is a binder at the Mpro S2
subpocket and could represent a starting point for structure-based
design of novel Mpro inhibitors.

The identified binding mode is defined by several favorable in-
termolecular interactions occurring between the newly designed
ligand and the Mpro binding pocket: i) the sulfur group of QUB-
00006(R) interacts with the oxygen of the carbonyl belonging to
the backbone of Glu166 with a distance of 3.3 Å, ii) the α,α-

difluoro moiety points towards the His41, and iii) the sulfur of
Met49 establishes a favorable interaction with one of the two flu-
orines of the substrate (distance 3.3Å). In fact, the sulfur-oxygen
contact observed in our simulations is in agreement with the find-
ings of a study conducted by Iwoaka et al.,68 where they found
that a total of 1200 and 626 fragments from the Cambridge Struc-
tural Database (CSD) and Protein Data Bank (PDB), respectively,
have close intermolecular S-O contacts (with a distance of 3.52
Å or less). Another study analyzing the protein structures de-
posited in the Protein Data Bank reports 1133 interactions be-
tween His and halogen atoms found in 3833 PDB entries with
one or more halogenated ligands co-crystallized with a protein69.
Moreover, the strong S-F interaction identified during the simu-
lations is in good agreement with experimentally observed dis-
tances for fluorine-sulfur contacts in crystal structures (2.8-3.4
Å)70. It is worth noting that such interactions involving sulfur
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Fig. 2 2D structures of: A) x0195; B) QUB-00006-Int-01; C) QUB-00006-Int-07, and, D) Qub-00006. The asterisk represents a chiral center.

and halogen atoms are usually better captured with polarizable
models than with their classical counterparts71–73.

QUB-00006 was then synthesized following the path in Figure
4 in order to validate in-vitro the simulation outcomes.

The ligand orientation in the MD simulations and the computed
hydration ratio of the different atoms of QUB-00006 during ABFE
simulations suggest that proton C is solvent exposed, while the
protons of the methyl thioether group (group E) and the methyl
group at position 4 of the tetrahydroquinoline core (group D) are
buried (Figure 3B).

Those findings strongly correlate with the NMR characteriza-
tion of QUB-00006 obtained via WaterLogsy experiments. In fact,
waterLogsy epitope mapping confirms that QUB-00006 binds to
the protein binding pocket. We leveraged the experimental ap-
proach to better identify the region of the ligand in contact with
the protein. In Figure 3C, the proton signals arising from the two
methyl groups (D ad E) in presence of Mpro show a change in
the sign suggesting that these protons are in close contact with
the protein. Similarly, the aromatic protons A and B, undergo
a sign inversion. On the contrary, the aromatic proton C is not
significantly perturbed, which suggests this position is solvent ex-
posed. The binding mode suggested by NMR is in agreement with
the MD-derived hydration ratios confirming the predictive power
of our MD-based approach to characterize the binding mode of
novel ligands with experimental level of accuracy (Figure 3B and
C).

Although we were able to gather structural information about
the binding mode of QUB-00006 using WaterLogsy assay, we
could not measure its experimental binding affinity via STD NMR
due to solubility challenges.

Several synthetic steps were performed in order to obtain QUB-
00006, as detailed in Figure 4. Through this synthetic scheme,
we obtained different intermediates characterized by a better sol-
ubility profile (Table 2). Interestingly, the hydroxyquinolinone
QUB-00006-Int-01 displayed the best solubility profile of all the
synthetic intermediates, making it a strong candidate for in-vitro
evaluation.

Before conducting NMR STD experiments to determine the
dissociation constant (Kd) of the more polar QUB-00006-Int-01
compound, we decided to predict its binding conformation at
the binding pocket and compute the respective absolute binding
free energy. Modification of the molecular scaffolds, especially in
fragment-like molecules, might affect the binding mode74 com-
pared to a reference structure (e.g. x0195 as per PDB ID:5R81).

MW (Da) logS logP
Tanimoto
(MACCS)

QUB-00006 229.07 -3.99 3.56 0.391
QUB-00006-Int-07 243.02 -3.73 1.96 0.371
QUB-00006-Int-01 245.03 -2.73 1.66 0.338

x0195 226.08 -1.94 0.56 1

Table 2 . Prediction of compounds properties using our Machine Learn-
ing workflow. MW represents the molecular weight of the compounds in
daltons, logS is the predicted solubility of the different compounds, logP
represents the differential solubility, and the Tanimoto coefficient reflects
the similarity of the selected compounds relatively to x0195.

We used a combination of docking, MD and ABFE calcula-
tions to explore the putative binding mode of QUB-00006-Int-
01. Those calculations identified two dominant binding modes
for QUB-00006-Int-01(R) and QUB-00006-Int-01(S) (Figure 5A)
with computed binding free energies of -4.4 and -4.3 kcal/mol,
respectively. Then, we estimated the binding affinity of QUB-
00006-Int-01 towards Mpro by a STD NMR titration and we found
a dissociation constant in the low millimolar range, with an esti-
mated Kd of 1.9 ± 0.6 mM (-3.71 ± 0.2 kcal/mol), which agrees
reasonably well with our binding free energy calculations (Table
1). As shown on Figure 5A, both enantiomers bind to the S2 and
S4 subpockets with the thioether group being fully buried in sub-
pocket S2, which correlates with WaterLogsy experiments (Fig-
ure 5C). Additionally, QUB-00006-Int-01(R) and QUB-00006-Int-
01(S) fill up a binding pocket space that is different from the one
occupied by QUB-00006. On the other hand, starting with a QUB-
00006-like binding mode, we ran an additional absolute binding
free energy calculation on Mpro:QUB-00006-Int-01R complex and
obtained a binding free energy of -0.9 kcal/mol. These results
suggest that QUB-00006-Int-01 and QUB-00006 might have dif-
ferent dominant binding conformations (see Figure 3A and Figure
5A).

Since a fragment-like molecule could have multiple binding
modes and the ligand conformation is unlikely to be fully sam-
pled during 20 ns of binding free energy simulations, we used
unsupervised adaptive sampling (AS) to further explore the con-
formational space of QUB-00006-Int-01. AS can be use here as an
interpretative tool able to gather structural insights on the various
potential Mpro-ligand interactions (see SI for details). The AS tra-
jectories were clustered using average-linkage hierarchical clus-
tering algorithms and the top ten largest clusters were chosen for
analysis. These clusters have comparable populations (the small-

Journal Name, [year], [vol.],1–13 | 7



Fig. 3 Computational and experimental characterization of QUB-00006 binding within Mpro binding pocket. A) QUB-00006(R) (in light green) and
QUB-00006(S) (in cyan) bind in a similar fashion at the interface of subpockets S2 and S4; the binding poses shown here were clustered and extracted
from the trajectories of the binding free energy calculations performed on QUB-00006(R) and QUB-00006(S). B) The analysis of our binding free
energy trajectories shows that protons in group A, B, E, and D have a low hydration ratio (less than 0.5), while the proton of group C has a high
hydration ratio of 0.8. Hydration ratios calculated for the different proton groups of QUB-00006(R) correlate with those calculated for QUB-00006(S).
C) The waterLOGSY spectra of QUB-00006 in presence and in absence of the Mpro. The assignment scheme is reported along with the 2D structure
of the ligand. The strong negative intensity of the signals of the hydrogens of groups A, D, and E suggests that they are orientated towards the
protein, whereas the hydrogen atom in C is solvent exposed. These experimental findings confirm the hydration ratio calculated during our binding
free energy simulations and described in panel B.

QUB-00006-Int-01(R) QUB-00006-Int-01(S)
cluster Fraction ∆∆G cluster Fraction ∆∆G

1 0.101 0 1 0.103 0
2 0.083 0.05 2 0.093 0.03
3 0.067 0.11 3 0.088 0.04
4 0.053 0.17 4 0.065 0.12
5 0.042 0.23 5 0.059 0.14
6 0.035 0.27 6 0.054 0.17
7 0.034 0.28 7 0.049 0.19
8 0.033 0.29 8 0.039 0.25
9 0.032 0.30 9 0.033 0.29

10 0.032 0.30 10 0.031 0.31

Table 3 Population of the clusters generated by adaptive sampling per-
formed on Mpro in complex with QUB-00006-Int-01 (R) and (S). ∆∆G
(kcal/mol) is the relative free energy at 298 K. The relative binding free
energies reported for QUB-00006-Int-01 (R) and (S) are calculated using
the respective cluster 1 as a reference ligand.

est clusters have 3-4 times smaller populations or 0.3 kcal/mol
higher free energy than the largest clusters, see Table 3), indicat-
ing the coexistence of multiple binding modes.

More precisely, starting from these clusters, absolute binding
free energies would yield results within 0.3 kcal/mol of what was
previously obtained. The simulations of QUB-00006-Int-01(R)
and QUB-00006-Int-01(S) converged to similar ensembles con-
taining several possible binding modes. Clusters 3, 5, and 6 of
QUB-00006-Int-01(R) and cluster 4 of QUB-00006-Int-01(S) SI-
Figure 2) correspond to the respective dominant binding modes
predicted by ABFE simulations (Figure 5A). For both enantiomers,
the most conserved interactions are the hydrophobic contacts be-
tween C9 (methyl thioether) and Gln189, and between C5 (pro-
ton B) with His41, Arg188, and Gln189.

Overall, our computational findings on QUB-00006-Int-01 con-
firm that the structural approach we introduce in this work us-

ing a sequence of MD-based techniques (classic MD simulations,
adaptive sampling, and absolute binding free energy calculations)
is able to capture potential binding orientations of fragment-like
compounds in the binding pocket of a protein, and to accurately
predict their binding free energies.

Then, we analyzed the clustered QUB-00006-Int-01 binding
conformations from the adaptive sampling simulations plotted as
a function of the distance between the methyl thioether group in
QUB-00006-Int-01 and the beta carbon of Gln189, and the dis-
tance between C2 (carbon connected to hydroxyl) and the sul-
fur atom (SG) of the catalytic side chain of Cys145 residue (Fig.
6). We noticed that the distance of C2-SG in the most popu-
lated cluster generated by the AS simulations is around 4 Å. To
reinforce our analysis, we leveraged another unsupervised reduc-
tion of dimension technique: TICA (the time-lagged independent
component analysis)75, which aims at finding the slow collective
variables of the data, and applied it to QUB-00006-Int-01(R). We
then used the k-mean clustering method on the data projected on
this space and built a Hidden Markov State Model (HMSM)76.
Three clusters emerged, whose characteristics also show the co-
existence of several binding modes of QUB-00006-Int-01(R), one
of which corresponding to a distance between C2 and SG below
4 Å. Detailed results can be found in SI.

Targeting Cys145 with covalent warheads has been used
by several researchers to discover novel potent inhibitors of
Mpro 38,63,77. As a matter of fact, a simple chemical modifica-
tion to QUB-00006-Int-01 would lead to QUB-00006-Int-07 bear-
ing an α,α-difluoro-keto moiety, which is prone to a nucleophilic
attack by the vicinal R-SH of Cys145. In order to enable the lat-
ter, QUB-00006-Int-07 would need to access the Mpro substrate
pocket and adopt a stable binding conformation prior to the co-
valent binding to occur. Thus, we conducted absolute binding
free energy simulations on the Mpro:QUB-00006-Int-07 complex,
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Fig. 4 Synthesis path of 3,3-difluoro-4-methyl-7-(methylsulfanyl)-1,2,3,4-tetrahydroquinoline named QUB-00006.

which confirmed a favorable binding energy of QUB-00006-Int-
07 to the Mpro substrate pocket (-5.37±0.23 kcal/mol). As re-
ported in Figure 7, compound QUB-00006-Int-07 is bound to the
S2 and S4 subpockets with the thioether group being fully buried
in subpocket S2 and the α,α-difluoro-keto moiety facing Cys145.
More precisely, the average distance between SG and the C is 3.65
Angstroms (± 0.33) and the average distance between the SG and
C2 is 3.61 Angstroms (± 0.43) as can be seen in Figure 7.

Our computational findings motivated us to test the compound
with a FRET-based proteolytic assay. This assay should detect po-
tent functional binders to the viral Mpro. Being a fluorogenic as-
say, compounds with fluorescence quenching properties can sup-
press the fluorescence signal generated by the protease activity.
To eliminate false positive results, we conducted a preliminary
counter screen and verified that the tested compound possesses
negligible fluorescence quenching effects. Subsequently, to as-
sess the potential inhibitory activity of the compound against
SARS-CoV-2 Mpro, increasing concentrations of QUB-00006-Int-
07 (0.25-150 uM) were incubated with 20 nM Mpro before the
addition of 5 µM FRET substrate. As shown on Figure 8, QUB-
00006-Int-07 inhibited Mpro with 50% inhibitory concentration
(IC50 value of 830 ± 50 nM), thus resulting in a fairly potent
inhibitor of the Mpro enzymatic activity. The binding of QUB-
00006-Int-07 to Mpro was confirmed by electrospray ionization
(ESI) mass spectrometry.

A preliminary determination of the initial protein showed an
experimental mass of 33796.40 Da, which matches very closely
the expected value of 33796.64 Da calculated from the sequence
(Figure 9A). The sample obtained after incubation of QUB-00006-
Int-07 with Mpro (compound:protein=10:1 ratio) was analyzed
by ESI-MS in denaturing conditions, and a representative spec-

trum is provided in Figure 9B. In addition to the signals cor-
responding to multiple charge states of the initial protein (red
dots), we identified the distribution of signals corresponding to
the Mpro modified by the presence of the compound (green as-
terisks) which is therefore covalently linked to the protein given
the non-native conditions of the experiment. The nature of the
adduct and the molecular mechanism of binding is under investi-
gation and will be subject of further studies.

Finally, in this work, the introduction of multiple modifications
(e.g. gem-difluoro, thioether, hydroxyl and methyl groups) to the
tetrahydroquinoline scaffold of x0195, and the design and synthe-
sis of novel molecular scaffolds, (see Table 2) enabled exploration
of binding pocket boundaries and provided additional informa-
tion related to druggability of the S2 subpocket. Other molecules
were produced over the course of this research but, due to their
weaker activity, their detailed analysis is not provided here. Their
list can be found in SI. These compounds were either designed
computationally without leading to improved affinities or were
synthesis intermediates. All resulting molecules were submitted
to biological testing, but none of them were found to be as potent
as QUB-00006-Int-07 nor presented a strong druggable profile,
compared to the previously discussed compounds.

Conclusion and perspectives
We presented a computationally-driven discovery of a new set
of non-covalent and covalent inhibitors of Mpro that have been
further characterized experimentally. The best compound, QUB-
00006-Int-07, has been found to be a covalent binder that re-
sulted in a potent inhibition of the Mpro enzymatic activity
(IC50= 830 ± 50 nM). The results on the innovative scaffold
design described here were obtained within three months via a
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Fig. 5 Computational and experimental characterization of QUB-00006-Int-01 in Mpro binding pocket. A) The dominant binding modes of QUB-
00006-Int-01(R) (in pink) and QUB-00006-Int-01(S) (in magenta), identified during ABFE simulations, have computed binding free energies of -4.4
and -4.3 kcal/mol, respectively; also, they bind to the S2 and S4 subpockets in a similar fashion with the thioether group being fully buried in S2.
On the other hand, starting with a QUB-00006 like binding mode, we ran an additional absolute binding free energy calculation on Mpro in complex
with QUB-00006-Int-01(R) and obtained a second binding mode for QUB-00006-Int-01(R) (in green) with a binding free energy of -0.9 kcal/mol. B)
STD titration profile of QUB-00006-Int-01. The ligand concentration ranges from 100 µM to 2 mM against 10 µM of Mpro. C) The WaterLOGSY
spectrum of QUB-00006-Int-01 with Mpro (in blue) and without Mpro (in red). The assignment of the signals is reported on the 2D structure of
the fragment. The methyl and the aromatic signals of the two protons adjacent to the hydroxyl group undergo a significant change, which suggests
that these groups are in close contact with the protein’s cavity. On the contrary, the aromatic proton adjacent to the lactamic nitrogen undergoes a
reduction of its intensity, suggesting that this proton is partially exposed to the solvent. These STD results confirm our computational characterization
of the binding mode of QUB-00006-Int-01 (Panel A).
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Fig. 6 Conformations of QUB-00006-Int-01 sampled during 20 ns of
ABFE calculations and 450 ns of adaptive sampling simulations. The
conformation was plotted as a function of two distances: i) the distance
between C2 (carbon of QUB-00006-Int-01 connected to the hydroxyl
group) and the sulfur of Cys145, and ii) the distance between the methyl
thioether group in QUB-00006-Int-01 and the beta carbon of Gln189.
“0” indicates the starting structure, “1” indicates the largest cluster, and
“i” indicates the ith largest cluster. The frames were taken at 10 ps time
interval.

fast track project that took place in the summer of 2021. It
involved a small consortium of theoreticians, organic chemists
and drug designers, and demonstrated the effectiveness of a
computation-guided synthetic strategy. Indeed, GPU-accelerated
high-performance computing platforms can now provide access to
high-resolution molecular dynamics simulations, which are able
to predict detailed protein conformational maps and to provide
accurate absolute binding free energy results. Such computations
can be further rationalized by means of adaptive sampling sim-
ulations, an approach which is able to decipher multiple bind-
ing modes. Coupled to NMR, in-vitro experiments and machine
learning, such high-resolution predictions yield structural insights
regarding the design of new active compounds, while offering an
atomic level understanding of binding affinities.

Beyond this preliminary proof of concept study, next research
steps will be devoted to the QM/MM modeling78,79 of the war-
head reaction mechanism38,77,80 leading to the covalent binding
of QUB-00006-Int-07, and to optimization of active compounds
with the goal of reaching low nanomolar activity.
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Fig. 7 The dominant binding mode of QUB-00006-Int-07 during ABFE
simulations. A) Time evolution of key distances in the simulation. "SG"
stands for the sulfur atom in Cys145, "C" is the amide carbon in QUB-
00006-Int-07, and "C2" is the carbonyl carbon in QUB-00006-Int-07.
The average distances for SG-C and SG-C2 are 3.61 Å and 3.65 Å, re-
spectively. B) The dominant binding mode of QUB-00006-Int-07 within
Mpro binding pocket. QUB-00006-Int-07 is shown in pink and the protein
is shown in silver sticks and surfaces. The binding mode is very stable
during the simulation, where the hydroxyl group is close to Cys145 and
forms a hydrogen-bond with Glu166 backbone, and the difluoro group
interacts with the carbonyl group of Asn142. These binding modes are
also comparable to the dominant binding mode of QUB-00006-Int-01(S)
identified during ABFE calculations.
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