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Abstract

Partial infinite swapping (PINS) is a powerful enhanced sampling method for com-

plex systems. In the present work thermodynamic observables are determined from

reweighting at the post-processing stage for folding of (Ala)10 in implicit and explicit

solvent and for Xenon migration in myoglobin. In every case free energy surfaces are

determined using PINS with an accuracy comparable to Molecular Dynamics and Par-

allel Tempering simulations but at considerably reduced computational cost. Round

trip times through the ensemble of temperature space are shown to be almost one or-

der of magnitude shorter for PINS compared to PT simulations for (Ala)10 in implicit

solvent which suggests that PINS is more efficient for sampling diverse structures. Con-

sistent with NMR experiments on shorter (Ala)7 poly-alanine peptides, simulations of

(Ala)10 in explicit solvent highlight the essential role played by the environment in

stabilizing extended conformations which are unfavourable in implicit solvent. Addi-

tional low-energy regions are β−hairpins, 1 to 2 kcal/mol above the minimum energy

structure. For Xenon migration in Myoglobin, PINS finds stabilization energies of the

experimentally known Xenon-pockets to range from −4.6 to −6.2 kcal/mol, in accord

with experiment. Furthermore, the barrier heights between neighboring pockets have

been determined to be ≈ 4 kcal/mol. By starting simulations from individual pockets,

PINS finds sampling of the entire pocket network on the time scale of 3 ns using 32

replicas whereas with MD, 100 ns are not sufficient to access all pockets. Hence, PINS

with reweighting is found to be both, a quantitatively accurate and computationally

efficient method for studying complex biological molecules in solution.

Introduction

Molecular Dynamics (MD) and Monte Carlo methods (MC) are widely used for characteriz-

ing biological processes using computer simulations. Although the computational resources

are continuously increasing, sampling the large conformational space available for proteins is

very challenging. However, in order to provide an atomistically refined picture for processes
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such as protein folding or large conformational changes with functional relevance, such rare

events must be sampled. As they usually occur on time scales of the order of microseconds

(or longer), directly sampling them with unbiased MD or MC simulations is difficult. Hence,

enhanced sampling methods are a possible way forward as such approaches increase the

probability for accessing low-probability configurations.

An important aspect which is subject to continuous improvement efforts is the ability to

sample rare-events, a particular challenge for complex systems. For systems in which con-

figuration space is well connected, standard techniques (e.g. Metropolis-Hastings1–3) are

efficient. However, for situations in which configuration space decomposes into poorly con-

nected subregions or where barriers between neighbouring states are high, enhanced sam-

pling is required. Several such methods for rare event sampling have been developed in

the past. They include parallel tempering (PT),4–6 replica exchange (RE)7 (including the

recent development of asynchronous variants such as ASyncRE8), spatial averaging9–11, um-

brella sampling (US),12 metadynamics,13 and many more. The methods either use a bias to

steer the system between regions in configuration space (US, metadynamics) or they expand

thermodynamic state space as is done for PT or RE based methods. This contrasts with

conventional stochastic methods which typically use random walks for generating a statisti-

cal sampling of the desired equilibrium probability distribution.

Another method which has recently been developed is Partial Infinite Swapping (PINS)14–18

which is based on the PT/RE algorithms. PINS uses a symmetrisation strategy for combin-

ing probability distributions at different temperatures, so that they become more connected

and thus easier to sample than the original ones. The present work discusses the statistical

reweighting to extract thermodynamic information from PINS simulations15,17 and applica-

tions to two systems: the alanine decapeptide (or deca-alanine) which becomes a challenging

system particularly in explicit solvent,19–26 and Xenon migration in Myoglobin,27–34 a system
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for which experimental data to compare with is available and which requires extensive direct

sampling of the free energy surface.

Computational Methods

Considering a Canonical (NV T ) ensemble, the probability ρ(X) of observing a system in

state X is related to its potential energy V (X) through

ρ(X) = 1
Z

e−βV (X) (1)

where X = X1, ..., Xk is a k−dimensional vector (where k = 3 for MC or k = 6 for MD),

populating a subset D of the configuration space RkN , Z is the canonical partition function

Z ∼
∫ D⊂RkN

e−βV (X)dX, and β = 1/kBT is the inverse temperature and kB the Boltzmann

constant.

Parallel Tempering (PT) (also known as Replica Exchange (RE)) methods4–6 were success-

fully applied to investigating a wide range of chemical and biological systems. In PT K

replicas are followed and the partition function Z of the overall ensemble is:

Z =
K∏

i=1

qi

M !

∫
dXi e−βiV (Xi) (2)

where qi = ∏M
k=1(2πmkkBTi)3/2 is obtained by integrating out the momenta of the M particles

with mass mk, V (Xi) is the potential energy for the coordinates Xi, and βi = 1/kBTi is the

reduced temperature for replica i. In the simulations, replicas are exchanged between two

adjacent temperatures Ti ↔ Tj with probability

Pacc(i ↔ j) = min{1, e(βi−βj)(V (Xi)−V (Xj))} (3)
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The K temperatures are usually distributed non-linearly between T1 and TK with TK > T1.

Here T1 is the desired simulation temperature and the ratio Ti+1
Ti

is kept constant which

yields a constant acceptance value of Pacc(i ↔ j), see Ref.6 for a discussion on the choice

of temperatures and the impact on Pacc. It is also worth mentioning that when exchanging

coordinates between replicas velocities are also exchanged, but rescaled to the temperature

of the destination replica.

Infinite Swapping limit for Parallel Tempering simulations

The infinite swapping (INS) method also uses an expanded ensemble built from a number of

replicas at different temperatures.14 Contrary to PT, INS is based on the fully symmetrized

distribution of configurations in temperature space, whereas PT only occasionally enriches

the local temperature with configurational information from simulations at a higher temper-

ature. Formally, INS is based on a mathematical analysis of the convergence rate of PT sim-

ulations as a function of the temperature swap attempt frequencies.14,16,18 It was proven16,18

that this convergence rate is a monotonically increasing function of the swap rate, and thus

optimal sampling is reached in the infinite swapping limit (i.e. swap at every MD time step).

In other words, INS provides optimal sampling for a given replica by using information from

all other temperatures used in the simulation. This can be achieved by allowing exchanges

between all replicas at each time step. For K replicas the number of permutations of a set

of configurations X is K! if all possible exchanges were attempted and the probability ρk(X)

of permutation k is

ρk(X) = pk(X)∑K!
k=1 pk(X)

. (4)

with

pk(X) =
K∏

i=1
e−βiV (xk,i) (5)
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and xk,i is the configuration of replica i corresponding to the assignment of configurations to

temperatures in permutation k. The permutation k with the highest acceptance probability

pk is found by evaluating and comparing all ρk(Xi). However, for large systems this includes

a large number of permutations, and it is computationally too expensive to consider all K!

probabilities.

For putting INS to practical use, the partial infinite swapping (PINS) algorithm was in-

troduced.14–17 PINS uses a partitioning strategy whereby temperature space is divided into

blocks, and local (but full) symmetrisation is used within each block. More precisely, the

current implementation uses the “dual-chain” approach15, where the K−temperature set is

partitioned into blocks of temperatures in two different ways, one for each chain. The two

blocks must have a complementary structure without a boundary between the blocks defined

for the two chains. This is required in order to achieve sampling of the overall temperature

space for all the replicas. For a set of 12 temperatures, a possible partitioning for the two

chains (a|b) is (3, 6, 3|4, 4, 4), where the common boundaries for chain a are between T3 and

T4, T9 and T10, and for chain b they are between T4 and T5 and T8 and T9, respectively. On

the other hand, the partitioning (3, 3, 6|6, 3, 3) is not valid, as chains a and b share a common

boundary between T6 and T7.

Similar to standard PT simulation, PINS requires K replicas, and the temperatures {T1, · · · , TK}

at which they are run. The user also provides a frequency of attempted exchanges between

replicas. The sampling efficiency of PT simulations is optimal with attempted exchanges at

each MD step, see above. However, this requires communication of the coordinate vectors,

using technologies such as message passing (MPI) which is a bottleneck for the simulation

of large systems as inter-node communication is usually slower than computation. It is thus

required to attempt exchanges as often as possible, but not too often to avoid inter-node com-

munication saturation. For a concrete application the best choice depends on (i) the system
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size because the smaller the system, the larger the ratio of communication time/calculation

time, and (ii) hardware/software considerations, mainly the maximum communication speed

possible between two replicas running on different compute nodes.

Statistical reweighting

An important aspect in making practical use of PINS for concrete applications is the eval-

uation of unbiased statistical averages. This point has not been considered specifically in

previous work but is essential when comparing efficiency and accuracy of a particular com-

putational methodology and comparing with experiment for specific observables.17 PINS

provides data at all temperatures Tj which are used for computing properties at a given

thermodynamic state j. When computing averages of observables this requires reweighting

of the data collected at different Tj. This step can either be performed during the simulation

(“on the fly”), or at the end of the simulation (“post-processing”). For the current implemen-

tation it was decided to employ post-processing because on the fly processing would result in

non-negligible computational overhead when studying large systems. This implementation

is particularly efficient if various system properties are potentially of interest since it allows

to decide after the simulation which evaluations are to be carried out. Finally, the post-

processing step is optional (if no thermodynamic estimate is desired), compared to biased

methods where the unbiasing step is a requirement in order to computer accurate properties.

For the reweighting the list of permutations attempted at a given swapping step of the sim-

ulation is required. This list can be rebuilt at the post-processing stage from the following

information: (i) the total number of simulation steps, and the swapping frequency at which

the PINS algorithm was applied (100 steps was found to be a good compromise between

sampling and performance17), (ii) the number of temperatures K, (iii) the dual chain pa-

rameters, i.e. the number of temperature blocks, and the number of temperatures within
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each block (see above). It is also necessary to save the potential energy V (Xi) of each atomic

configuration when swapping. With this information it is possible to calculate a system prop-

erty C(i, Tj) at temperature Tj based on its replica-specific value c(xk,i), with xk,i being the

coordinates of the replica assigned to Tj in permutation k and step i. The permutations to

be considered here belong to the block containing Tj in the dual-chain configuration of step

i, which results in

C(i, Tj) =
Pblock∑
k=1

ρk(Xi)c(xk,i), (6)

with Pblock being the number of permutations in the given block of the current chain and

ρk(Xi) calculated using Eq. 4 for the given block. For PINS to be computationally efficient it

is essential that ∑
Pblock << K! is fulfilled. As an example, for the (3, 6, 3|4, 4, 4) dual-chain

mentioned above, ∑
Pblock = (3! + 6! + 3!) + (4! + 4! + 4!) i.e. P = 804 permutations, to be

compared with K! = 12! ≈ 4.8 ∗ 108 permutations for full INS swapping.

For calculating the 2D free energy surface F (x, y) (FES) depending on two variables x and

y (illustrated later with an application to the alanine-decapeptide) this is applied as follows:

values of x and y are first computed for each configuration from each trajectory. From a

normalised 2D histogram the free energy is therefore

∆F s(xi, yj) = −RT s ln(ρ(xi, yj)) (7)

where F s and T s are the single state free energy estimate and the corresponding temperature,

respectively, and ρ(xi, yj) is the probability density for cell (i, j) on the 2D grid. An estimate

based on data generated at multiple thermodynamic states (m superscript) is obtained from

∆F m(xi, yj) = ∆F s(xi, yj) ·
K∑

k=1
ρk(xi, yj) (8)

where (i, j) runs over the discretised cells, and m over all single states (defined by Eq. 7).
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This procedure is easily adapted and extended to other thermodynamic properties which

can be estimated from a discretised grid. As will be demonstrated in the applications, this

reweighting improves the FES estimates in low probability regions, such as transition states,

which are particularly important for conformational transitions.

For the statistical reweighting in a post-processing step separate analysis software was writ-

ten which is currently available for the CHARMM implementation of PINS. For completeness

it is also mentioned that all simulations carried out in the present work employ an updated

implementation of PINS because CHARMM underwent profound changes in its architec-

ture. Hence, it was decided to implement PINS with a dual-chain approach into the most

recent CHARMM c41 release. The current implementation is fully parallelized following the

MPI implementation of the ENSEMBLE module and compatible with domain decomposi-

tion which provides additional computational speedup. However, most algorithmic aspects

are those from the original implementation.17

Ala10 in Implicit and Explicit Solvent

Alanine decapeptide (Ala)10 is a chain of 10 residues. In vacuum it is known to fold into

a regular α-helix due to the stabilizing effects of the hydrogen bonds. However, in explicit

solvent its structure is more debatable. In fact, NMR experiments together with MD simula-

tions on shorter solvated (Ala)3 to (Ala)7 peptides suggest that they populate predominantly

polyproline II conformations with some β−sheet structures but α−helical conformations are

not observed.35 Hence, for simulations in solution a distribution of candidate structures is

expected.

(Ala)10 has also been used as a test system in the recent development of several optimised MD
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sampling techniques such as unconstrained MD (explicit solvent),19 adaptive steered molec-

ular dynamics (in vacuum),20 Multi-Replica and Multiple-Walker Adaptive Biasing Force (in

vacuum),21 or Simulated Tempering (explicit solvent),22 and thus is a suitable benchmark

system. The thermodynamic stability of the α-chain and folding or unfolding pathways were

also investigated in vacuo24 and in explicit TIP3P solvent26,36, and free enthalpy differences

between the α-chain and two less stable π- and 310- chains were also investigated (coarse-

grained water model).25 However a recent study26 of (Ala)10 in solution showed that fold-

ing/unfolding is much more complex than the previously reported “accordion-like scheme”37

in explicit solvent, and indeed an extended set of non-helical and compact states is usually

observed. This system was investigated with the new PINS CHARMM implementation,

and results are compared with Molecular Dynamics (MD) and Parallel Tempering (PT) sim-

ulations running with (when possible) identical simulation parameters for direct comparison.

Simulations in Implicit solvent

Figure 1: (Ala10): extended starting structure (blue), and folded structure (red) obtained
after 100 ns of MD with GENBORN implicit solvent. In cyan and orange, the carbonyl-
carbon atoms define the end-to-end distance ξ in Å, used for following compactification and
building ∆F surfaces. The extended structure has ξ = 31.04 Å, and the α-helical structure
is characterised by a ξ = 14.13 Å.

All simulations were run with CHARMM c41 and the CHARMM Force Field version 36
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which includes CMAP corrections.38,39 Simulations in implicit solvent used the GENBORN

model and started from an extended structure (Figure 1, in blue). A time step of 1 fs

was used, and three independent simulations of 100 ns each were first performed with each

method (MD, PT and PINS). For all structural comparisons the α−helical structure (red in

Figure 1) was the reference for computing the RMSD.

The temperature was 300 K for the MD simulation, and for the PT and PINS simula-

tions an ensemble of 16 replicas at the following temperatures was used: 300.00, 329.52,

361.58, 396.42, 434.24, 475.31, 519.92, 568.35, 620.92, 677.99, 739.94, 807.32, 880.32, 959.70,

1045.71, 1139.03 K. These temperatures were chosen according to a temperature prediction

algorithm40 available as a free web-service, which generates a temperature set optimised for

obtaining a desired exchange acceptance ratio, which was chosen to be 40% in the present

case. The dual-chain PINS approach with two chains of 3 blocks (6, 6, 4|4, 6, 6) was used. In

the following MD, PT and PINS simulations are compared with regards to i) the simulation

time required to reach a compact state ii) structural diversity of the ensemble generated

iii) round trip time analysis (PT and PINS only) to visit the entire temperature manifold

considered and iv) 1- and 2-dimensional free energy surfaces along meaningful progression

coordinates.

Time to reach a compact state: First, the compactification of Ala10 for an individual tra-

jectory using MD (Figure 2A), PT (Figure 2B) and PINS (Figure 2C) was followed by

considering the RMSD(t). The red label in Figure 2 indicates the simulation time τ required

to reach a compact state, defined as a structure with RMSD < 2 Å compared to the refer-

ence structure. This occurs by 11.99 ns for MD (Figure 2A), whereas for PT and PINS this

threshold is reached within 0.40 ns and 0.12 ns (respectively Figures 2B and 2C). Thus, for

this case PINS reaches a compact state two orders of magnitude more rapidly than MD, and

approximately three times faster than PT.
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Figure 2: RMSD fluctuations of (Ala10). 20 ns (from a total of 100 ns, see section SI1 for an
illustration of the full 100 ns) of MD (A), PT (B) and PINS (C), with GENBORN solvent.
The red vertical lines indicate the time at which RMSD≤ 2 Å (partially helical compact
state). The reference structure is the α-helix from Figure 1.

By repeating such simulations one hundred times for each of the three methods (for a maxi-

mum of 20 ns for MD, and 5 ns for PT and PINS), the distribution P (τ) of times required to

sample a structure with RMSD < 2 Å is obtained (see Figure 3). This confirms the results

from a single run (Figure 2). For MD (red) the maximum of P (τ) is at around 12 ns with a

broader distribution, whereas for PT (green) τ ranges from 0.5 to 2.0 ns, with a peak around

1.0 ns, and for PINS (blue) from 0.25 to 2.0 ns with a peak at 0.5 ns. Hence, PINS converges

to the target structure more rapidly than PT, although the difference in this case is small.

Diversity of structures sampled: Secondly, it is of interest to assess the gain in terms of
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Figure 3: Histograms of the required time τ before reaching a RMSD of less than 2 Å, for
100 simulations of MD (red), PT (green), and PINS (blue). Simulations of 20 ns maximum
for MD, and 5 ns for PT-PINS, all using the implicit GENBORN solvent model.

structural diversity of sampling provided by PINS compared to PT. A visual analysis of Fig-

ures 2B and 2C shows that the RMSD fluctuations from PINS (bottom) are usually larger

compared to PT (middle), indicative of a more exhaustive sampling in RMSD space. In

particular, taking RMSD < 2 Å as the threshold, many more recrossings are found with

PINS compared to PT or MD which leads to a more diverse set of structures which may be

advantageous for generating diverse sets of structures.

For a more comprehensive analysis it is advantageous to cluster the sampled structures.

The classification of recurring structural motifs can be based on different measures. In the

following RMSD is used together with k−means.41–43 Section SI2 provides details on the

methodology followed for performing the clustering, and justifies the choice of k = 6 clus-

ters, used for all the MD PT and PINS analysis.

Table 1 summarizes the results of clustering the data shown in Figure 2. The centers are
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Table 1: K−means clustering with k = 6 centers applied to RMSD fluctuations
from Figure 2. Clusters are sorted by increasing RMSD. PT (81 %) and PINS
(71 %) both show an increased sampling of the low RMSD centers (RMSD < 2
Å) compared to MD (65 %). See Section SI2 for a justification of k = 6.

MD PT PINS
centers (Å) pop. (%) centers (Å) pop. (%) centers (Å) pop. (%)

0.4 15.8 0.3 38.7 0.3 22.8
1.1 9.2 1.2 3.7 1.2 4.2
1.8 39.7 1.9 40.7 1.9 45.3
2.2 19.4 2.8 2.8 2.2 10.5
3.0 12.8 3.5 8.9 3.0 3.6
5.1 3.0 4.2 5.2 3.6 13.6

sorted by increasing RMSD, and the columns contain the relative population of each center.

For a representative clustering, 2×105 snapshots (taken from the first 20 ns shown in Figure

2) were analyzed. Performing the clustering over such a long time interval was necessary

because MD simulations often remain trapped in metastable configurations for extended

times (see Fig. 2 A between 5 and 10 ns), resulting in an overweighting of the corresponding

cluster. Tests with fewer data showed that none or only a few transitions are observed, and

with a larger amount of data the population of the low-RMSD cluster from MD simulations

monotonically increases as mentioned above.

It is found that PT (39 %) and PINS (23 %) lead to a larger population of the lowest RMSD

cluster around 0.3–0.4 Å compared to MD (16 %). It is also interesting to note that the

cluster center with the largest RMSD is centered at 5.1, 4.2 and 3.6 Å for MD, PT, and

PINS, respectively, which confirms that PT and PINS lead to an enrichment of compact

configurations. Furthermore, PT and PINS lead to very similar cluster centers for the three

most compact states whereas the next three cluster centers are more compact for PINS

compared to PT, highlighting that PINS favors compact states. This suggests that PINS

samples a larger number of stable and metastable structures than PT or MD simulations.

This is supported by Figure 2 where the bottom panel (PINS) shows a larger amplitude in
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the RMSD-fluctuations than the top and middle panels which correspond to MD and PT

simulations, respectively.

Next, all snapshots (i.e. 60 ns of simulation) from MD, PT and PINS were clustered together

which yields a different set of cluster centers. Then, the structures from each method (MD,

PT, PINS) were projected onto the cluster centers which yields their population for each

method (see Table S1 from Section SI2). Again, PT and PINS yield a larger population of

the most compact state. Furthermore, the transition between compact (RMSD < 2.0 Å) and

extended (RMSD > 3.0 Å) structures is more frequently sampled, as is also evident from

Figure 2.

Round-Trip Times: Another useful performance measure for comparing PT and PINS simu-

lations is the round-trip time tr which reports on the number of moves in multi-temperature

simulations to traverse the entire temperature ensemble.15,44–46 Figures 4A and B show the

occupation traces for PT and PINS, respectively, for one typical 100 ns long simulation

using 16 temperatures. The replica considered is replica 1, initially starting at the lowest

temperature (300 K). For PT the average round-trip time is approximately 10 ns and several

full cycles over the entire 100 ns are observed for this replica. Contrary to that the PINS

simulation show 100 round-trip events, i.e. an average tr of 1 ns.

Next, a statistical analysis of 100 PT and PINS simulations, each 5 ns in length, was carried

out. For PINS a total of 485 round-trips was found during the aggregate of 500 ns simu-

lations which yields an average round trip time of tr = 1.1 ns, representative of the single

simulation discussed above. The distribution of round trip times (red) is shown in Figure 5A.

On the contrary, for PT only 14 round-trips were observed. Hence, for most cases 5 ns were

not sufficient for one full round trip. For a better estimate of the round trip times for PT,
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Figure 4: Traces for replica 1 (T = 300 K initially) for PT (A) and PINS (B). Red dashed
lines correspond to the 16 simulation temperatures.

100 simulations, each 20 ns in length were carried out. This yields 221 events and an average

tr = 8.7 ns. The distribution P (tr) of round trip times is also shown in Figure 5A (black

trace).

Table 2: Statistical analysis for the round-trip time tr for replica 1, i.e. T1 →
T16 → T1.

PINS PT
Total sim. time 100 × 5 ns 100 × 20 ns
Observations 485 221
Mean tr (ns) 1.1 8.7
Std. dev. on tr (ns) 0.8 4.0

A final performance measure considered here is the autocorrelation function of the occupation

trace.15 This quantity reports on how rapidly a given replica α is propagated away from the

temperature trace TN it started off from. Let Nα
m be the index N of TN for replica α at

simulation step m. The normalized autocorrelation function Cα(s) of replica α is

Cα(s) = 〈(Nα
m − µ)(Nα

m+s − µ)〉
σ2

where s is the lag time between observations, µ = 〈Nα〉 and σ2 are the mean and variance of

Nα, respectively, and 〈...〉 denotes an expected value. Because the number of samples is large
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Figure 5: Panel A: Distribution of round-trip times (tr) T1 → T16 → T1 for the 100 × 5 ns
PINS simulations (red) and the 100×20 ns PT simulations (black). Panel B: Autocorrelation
C(s) for the Pins (red) and PT (black) simulations. Analyses are performed for the replica
initially at T = 300 K.

(105 to 106), the computation of Cα(s) can become computationally demanding. In practice,

it is possible to use the Wiener–Khintchine theorem47,48, which relates autocorrelation and

power spectrum, in order to determine Cα(s) over the desired time interval:

Cα = 1
σ2 F−1

(
|F(Nα − µ)|2

)
. (9)

Here F is the Fast Fourier Transform (FFT) of the quantity in brackets. Figure 5B shows

the autocorrelation function estimated for PT and PINS for replica 1, initially at 300 K.

Equation 9 is used to estimate Cα over several ten ns, although only the first few ns are

sufficient for PINS to reach values of C(s) ≈ 0. PINS always reaches quasi-uncorrelated val-

ues for every replica at least twice as rapidly compared to PT. Typically, an autocorrelation

value of C(s) ≤ 0.2 is reached within 0.2 to 0.5 ns for PINS, whereas it usually takes 1.2 to

2.5 ns for PT.

One- and Two-Dimensional Free Energy Profiles: In a next step the end-to-end distance ξ

between the carbonyl carbon atoms of the first and last residue was analysed (see Figure
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1). This coordinate was already used previously for monitoring the progress of folding.26,37

The α-helical structure was assigned to ξ = 15.2 Å or ξ = 14.2 Å, and extended structures

were associated with ξ = 33.0 Å or ξ = 32.0 Å, respectively. The structures shown in Figure

1 correspond to ξ = 14.1 Å (red α-helix) and ξ = 31.0 Å (blue). Compact structures are

usually defined as configurations with ξ ≤ 16.75 Å.26

Figure 6: Free energy profile (∆F in kcal/mol) built using the end-to-end distance ξ between
carbonyls’ carbon from first and last residue of Ala10 (see Figure 1) in implicit GENBORN
model. Estimated for a total simulation time of 100 ns of MD (black), PT (red) and PINS
(blue). The error bar is the statistical 95% confidence interval.

Figure 6 shows free energy profiles from MD (black), PT (red) and PINS (blue) simula-

tions. They were generated from the 100 ns simulations by extracting and binning the

end-to-end distance ξ from which the Helmholtz Free Energy was estimated according to

∆F (ξ) = −RT ln(ρ(ξ)), where ρ(ξ) is the normalized density. The error bars correspond to

the statistical 95% confidence interval. From the present simulations, minima were found

at ξ = 14.7 Å (MD) and ξ = 14.5 Å (PT and PINS), respectively. The extended states
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(16.0 ≤ ξ ≤ 28.0 Å) are associated with free energies rising up to 6.0 kcal/mol above the

minimum.

Figure 7: Free energy profile (∆F in kcal/mol) built using the end-to-end distance between
carbonyls’ carbon from first and last residue of Ala10 (see Figure 1) in implicit GENBORN
model. Estimated for 5 temperatures from the PINS simulation of 100 ns long.

PINS simulations can be used for investigating the stability of Ala10 in implicit solvent at

higher temperatures. Figure 7 reports ∆F at five different temperatures. First, ∆F curves

for 300 K and 329 K are fairly similar. This suggests that the decapeptide is stable at

ambient temperatures. The α-helical structure, for ξ = 14.5 Å is still found to be the most

stable state at 329 K. At T = 396 K (green curve on Fig 7), this is still the case, but it is

observed that extended states (ξ > 15 Å) start being more sampled and thus more stable.

At T = 568 K (blue curve of Fig 7), the funnel-like structure centered around the α-helix

minimum disappears. The lowest value of ∆F is still found at ξ = 15 Å, but the free energy

curve flattens considerably. All configurations characterised by ξ ∈ [10; 27] Å are within

2 kcal/mol of the minimum, so frequent conformational changes will occur in this range of
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end-to-end distances. When considering even higher temperatures (e.g. 807 K, cyan curve

in Figure 7), the most stable configuration occurs around ξ = 21 Å, which is a non-helical,

extended structure. Finally, it is also found that at higher temperatures the free energy

curves flatten considerably.

2-dimensional FESs provide further insight into the relative stabilities of native and inter-

mediate states. For this it is necessary to introduce meaningful progression coordinates

describing the process of interest. They were chosen as the end-to-end distance ξ and the

degree of α-helical content α.26 The coordinate ξ describes the compactness of a structure

and α quantifies the amount of α−helical content (see Section SI4 for more details).

From simulations in implicit solvent a 2D histogram P (α, ξ) was built along ξ and α as pro-

gression coordinates, see Figure S4 from Section SI3. However, as the 2d FES is sampled less

extensively in the transition regions a multi-variate Kernel Density Estimation (KDE)49,50

was used for estimating the probability distribution matrix. KDE methods provide an ac-

curate density estimation, combined with an intrinsic interpolation step, compensating the

poor sampling of some of the bridging regions and higher energy areas (see Section SI3 for

details). For MD the simulation time is 100 ns; for PT and PINS the simulations were 6 ns

long and included 16 replicas (i.e. 96 ns of total simulation time). The MEP finding method

(see Sections SI3 and SI5) was used to determine paths between important (local) minima.

The 2d FESs from MD, PT and PINS in implicit solvent are reported in Figures 8A, C

and E, respectively. All simulations started in the fully extended state (characterised by

α ≈ 0.25; ξ ≈ 28 Å), and all find the global minimum to be an α-helix (point 1 in Fig-

ures 8A, C and E). For all cases a broad basin with a variable number of stable additional

α-helical structures (1 to 3 for MD; 1 and 2 for PT; 1 to 5 for PINS) is found. β-hairpin

structures (5 and 6 for MD; 3 and 4 for PT; 6 for PINS) appear at ξ = 5 Å and ξ = 7 Å for
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Figure 8: Ala10 FES (∆F in kcal/mol) from simulations at 300 K in implicit (left column)
and in explicit (TIP3P) water (right column) from the replica initially at 300 K. Panels A
and B for MD (100 ns for implicit, and 4 µs for explicit), C and D for PT (16 replicas of
6 ns for implicit, 32 replicas of 75 ns for explicit), E and F for PINS (16 replicas of 6 ns
for implicit, 32 replicas of 75 ns for explicit). The 2D FESs were built using Kernel Density
Estimation (KDE). Compared with standard 2D histograms (see Figure S4 Section SI3),
KDE yields a smoother surface with more connected areas. In panels B, D, and F state 1
corresponds to an α−helix, states 2 and 3 to a hairpin and states 4 and 5 to an extended
polyproline (PP-II) conformation. The effect of post-processing is illustrated in Section SI6
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MD simulations but only at one of these values for PT and PINS, respectively. Furthermore,

the connectivity of the α-helical and β-hairpin basins for MD and PINS is sampled, whereas

for PT these two regions appear to be poorly connected: the path connecting states “2” and

“3” (in Fig. 8C) was only found by allowing the path finding algorithm to extrapolate a

possible path even if the saddle point was poorly sampled. Despite the fact that less than

10 % of the data was analyzed for PINS (6 ns) compared to MD (100 ns), PINS provides a

representative picture of the 2D-FES which is less obvious for PT.

Previously, the folding of (Ala)10 in implicit solvent (Generalized Born Implicit Solvent) was

investigated using the CHARMM22 force field.51 It was found that compact structures are

favoured and the free energy curve varies over 5 kcal/mol between helical and fully extended

structures. This is comparable to the present work although no clearly preferred minimum

energy structure was found there contrary to the present simulations (see Figure 6). These

differences will be discussed further below. Even earlier work has focused on differences be-

tween possible helical structures of (Ala)10 without, however, considering the entire folding

landscape including unfolded and extended states.52 These restrained simulations found that

the α− and π−helical structures are only separated by ≈ 1 kcal/mol whereas the 310−helix is

destabilized by more than 10 kcal/mol relative to the two other structures. Such high-energy

regions (around 10 kcal/mol above the minimum) exhibiting helical structures in implicit

solvent are also found in the present work where the 310−helix is at ξ ≈ 17 Å and α ≈ 0.6.

Ala10 in Explicit Solvent

Next, the performance of PINS was assessed for studying the compactification of deca-alanine

in explicit solvent using the TIP3P water model.53 The same initial unfolded configuration,

Figure 1 (blue), was used. It was solvated in a cubic box of size 40.5 Å, heated and equili-

brated to a temperature of 300 K for MD (or to the target temperature for PT and PINS) for
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100 ps. The time step was always 1 fs and SHAKE54 was used for bonds involving H-atoms.

For MD, 100 independent simulations were performed, each 40 ns in length. Thus the total

simulation time is 4 µs (compared to 2.5 µs from Ref.26). The PT and PINS simulations

used 32 temperatures, between 300.00 and 380.87 K and 50 independent simulations, 1.5 ns

each were carried out which yields a total aggregated simulation time of 1.6 µs. The PINS

dual-chain structure used 6 temperature blocks (6, 6, 6, 6, 5, 3|3, 5, 6, 6, 6, 6). The Particle

Mesh Ewald method55,56 was used, combined with domain decomposition (DOMDEC)57 for

MD simulations. The non-bonded energy cutoff-cuton were set to, respectively, 9 Å and 7.5

Å, and the non-bonded lists were built using a heuristic algorithm with a buffer of 11 Å.

These settings follow the official documentation of CHARMM with DOMDEC.

ξ-based ∆F profile for MD Figure 9 shows the 1-dimensional free energy curve obtained

from binning the end-to-end distance ξ using 4 µs of MD simulations in explicit solvent. The

4 configurations shown are examples of typically sampled conformations (5.0 ≤ ξ ≤ 25.0)

during the simulations. Their free energy is within ∆F ≤ 1 kcal/mol of the global minimum,

illustrating the large number of metastable configurations possible for solvated Ala10.

2D ∆F surfaces for MD PT and PINS in explicit water: Two-dimensional FESs F (α, ξ) for

simulations in explicit water are reported in Figure 8B which uses data from 4 µs of MD

simulations. Figures 8D and F show FESs from PT and PINS simulations based on 75 ns

of data which is approximately 50 times less than for the MD simulations. This is because

only the data of the lowest-temperature replica was analyzed for PT and PINS. Overall, 1.6

µs (32 replicas of 75 ns each) of data is available, though.

MD, PT and PINS simulations in explicit solvent find the lowest energy minima (points

4 and 5 in Figure 8) for extended conformations, indicated by values of α ∈ [0.2; 0.5] and

ξ ∈ [22; 28]. Such configurations correspond to those shown in Figure 9 and are expected due
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Figure 9: Free Energy as a function of ξ for Ala10 in explicit TIP3P water from 4 µs MD
simulation. The red vertical line marks the point where ∆F = 0 kcal/mol for ξ = 22.75 Å, i.e.
the most sampled extended (non-helical) state. The 4 displayed configurations are examples
of structures for which ∆F ≤ 1 kcal/mol.

to the stabilising interactions between the solvent (water) molecules and the polypeptide. A

second set of stable conformations are β−hairpin structures (points 2 and 3), characterized

by α ∈ [0.4; 0.6] and ξ ∈ [4; 8]. With PT and PINS this area is sampled but find the states

at 3 kcal/mol (for PINS) and 5 kcal/mol (for PT) above the lowest-energy basin, compared

to 1 kcal/mol from MD simulations. The α−helix is found by MD and PINS (point 1) for

(ξ ≈ 12 Å, α ≈ 0.8). Contrary to that, PT does not find such compact, helical structures

but rather extended and poorly sampled structures (1 and 6 in Figure 8D) at ξ ≈ 20. Finally

for PT and PINS an extra intermediate (state 7), “bridging” the extended (states 4 and 5)

and β-hairpin (2 and 3) sets, was located around (ξ ≈ 12 Å, α ≈ 0.4). This state, which is

not found in MD simulations and located along the path connecting states 3 and 4 in the

MD simulations is a possible, but marginally stabilized (1.6 kcal/mol) intermediate.

Comparison of the 2-dimensional landscapes from simulations in implicit (Figures 8A, C,
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E) and explicit solvent (Figures 8B, D, F) highlight profound differences. Simulations in

implicit solvent find compact helical structures (ξ ≈ 15Å) preferred over extended structures

(ξ ≈ 28Å). This finding is i) consistent with recent simulations using NAMD with either the

CHARMM22/CMAP or CHARMM36 (which includes CMAP corrections by default) force

fields together with a range of biasing techniques (adaptive biasing force (ABF), umbrella

sampling (US), replica exchange MD (REMD))26 but ii) at variance with other, even more re-

cent, simulations using NAMD together with the CHARMM22 force field and various flavors

of steered MD simulations.51 Contrary to the simulations using CHARMM22,51 which find

that in explicit, implicit and in vacuo simulations prefer more compact structures (ξ ≤ 15 Å),

simulations using CHARMM22/CMAP and CHARMM36 suggest that both, compact and

extended structures are metastable states on the free energy surface.51 This is consistent with

the finding that the CHARMM force field without CMAP corrections yields an overpopula-

tion of α−helical structures which was also found for other force fields.58 The 2-dimensional

FES from all simulations in solution find that extended structures are favoured in solution

which supports findings from NMR experiments on short Ala-peptides (up to (Ala)7),35 and

previous studies59,60 that described those extended structures as Polyproline II (PP2) helices.

It is of interest to briefly compare the present results with those from ABF and replica ex-

change MD-umbrella sampling using CHARMM36 and explicit solvent.26 The simulations

were carried out over a range 12.5 ≤ ξ ≤ 31.5 Å which by construction excludes β−hairpin

structures. For the 1-dimensional free energy curve along ξ (see Figure 9 compared to Fig-

ures 3 and 8 from Ref.26) it is found that they all have more or less pronounced minima for

helical and extended conformations, separated by a flat and extended plateau. The free en-

ergy is typically within 1 to 2 kcal/mol of the global minimum. One-dimensional free energy

curves from biased (ABF or umbrella sampling) simulations in Ref.26 without additional con-

straints do not exhibit clearly preferred structures (e.g. α−helical or extended). However,

when integrating the 2-dimensional free energy surface along the α−helical content (Figure
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8 in Ref.26) two clearly distinguishable basins appear: one in an α−helical conformation and

the other in an extended state, separated by a 1 kcal/mol barrier. Such a free energy curve

along ξ is supported by the extensive 4 µs simulations from the present work, see Figure 9.

The present results (Figure 8) can also be compared with Figure 6 (bottom) from Ref.26.

Path (1 − 4 − 5 - between α−helical and extended) in the present work (Figure 8B) is also

found in Figure 6 (bottom).26 However, the least free-energy path from replica exchange

MD-umbrella sampling simulations finds a barrier of 3.5 kcal/mol between the α−helical

and the extended structure whereas the present work identifies this as a downhill process

(Figures 8B, D, and F), i.e. α−helical structures are unstable in explicit solvent. In addition,

there are further low-energy states found in the present work (states 2, 3 (MD, PT, PINS)

and state 7 (PT and PINS)).

To summarise, PINS (Figure 8F) provides results similar to what is obtained from extensive

MD sampling (Figure 8B), but with a total simulation time of 4 µs for MD, compared to an

aggregated 1.6 µs from PINS of which only 75 ns were included in the analysis. The results

support experimental results on shorter (Ala)7 and earlier simulations in implicit and explicit

solvation which yield flat free energy surfaces along the minimum energy path, exhibiting

stabilized α−helical and extended structures. However, the energetic ordering of these two

states depends on the description of the solvent. In explicit water, extended structures are

preferred over compact, α−helical structures and the presence of solvent makes alternative

helical structures such as π− or 310−helices much more favourable. This was also found

in previous work on rat and human Amylin.61 Finally, it is demonstrated that the CMAP

correction is required for meaningful description of the conformational free energy landscape

for (Ala)10.
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Xe Migration in Myoglobin

As a third application of PINS with reweighting the free energy surface of ligand diffusion

in globular proteins is considered. Because the physiological role of such pockets has as yet

not been clarified beyond doubt their characterization is essential. Ligand migration takes

place on extended time scales and usually involves appreciable barriers separating the various

metastable states. As a recent example, Xenon migration in Cytochrome ba3 oxidase has

been found to involve rate coefficients for exchange between neighboring sites on the order

of 1 s−1.62

Myoglobin (see Figure 11, left) is one of the best characterized proteins, both experimentally

and by using various types of simulation techniques, and serves as a model system for study-

ing ligand binding, unbinding, and migration.63 While the pockets accessible to guest atoms

(Xenon) and small molecules (O2, NO, CO) are well characterized from experiment27–30 and

theory/computer simulation31–34, the stabilization energies in these pockets, the pathways

between them and the energy barriers separating them are more debatable. Experimentally,

CO-migration was followed using Laue diffraction and the integrated electron density of the

CO-associated features were found to change over 6 orders of magnitude in time between

10−9 and 10−3 s with signal decay only starting after 10−5 s.64

A full characterization of ligand migration requires direct sampling of the entire free energy

surface. A considerable step towards this goal has been the analysis of several trajectories

of 90 ns (with 8 CO molecules each) to identify ligand entry pathways from the solvent.

Despite such a serious effort no free energy profiles were presented because most transitions

between pockets are still rare events and occur only once per trajectory.32 Since such exten-

sive sampling is computationally expensive, application of enhanced sampling methods is of

great interest.
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The use of Xenon as a guest molecule is motivated by the fact that it diffracts well (54 elec-

trons) in X-ray studies. Furthermore, Xenon only interacts via Van der Waals interactions

with its environment which - in addition to its large mass - further slows down diffusion inside

and between the cavities which makes the use of rare event sampling techniques mandatory.

Hence, Xe diffusion in Mb is a typical example of a topical and high-dimensional system for

which PINS offers potential advantages over other sampling techniques.

Computational setup: The CHARMM-GUI65,66 interface was used for generating an initial

structure, based on the Protein Data Bank entry 4NXA67. The CHARMM c36 force field39

was used together with CHARMM version c41. A cubic box of size 67 Å3, containing 8596

TIP3P53 water molecules was used for solvating the system. The non-bonded parameters

for the Xe atom were ε = −0.423 kcal/mol and Rmin,Xe/2 = 2.05 Å, which are comparable to

those used in previous work (ε = −0.494 kcal/mol and Rmin,Xe/2 = 2.24 Å).68. The Particle

Mesh Ewald55,56 algorithm is used for treating the non-bonded interactions (cuton–cutoff of

respectively 10–12 Å), bonds involving hydrogen were constrained using SHAKE54, and a

time step of 2 fs was used. The system was heated and equilibrated for 100 ps for MD at a

temperature of 300 K. The same heating–equilibration protocol is followed for PINS, which

uses a dual chain approach of 32 replicas (6, 6, 6, 6, 5, 3|3, 5, 6, 6, 6, 6), and to each replica a

temperature between 300.00 and 393.95 K is assigned. Simulations were started using a set

of configurations in which one Xe atom is initially assigned to one of the 4 experimentally

known pockets (Xe1 to Xe4, see Figure 11 right part). For each of the 4 systems MD simula-

tions 100 ns long were carried out. For PINS each replica was simulated for 3.0 ns resulting

in a total aggregated simulation time of 96 ns, in order to compare similar amount of data

from MD and PINS.

Results: For both, MD and PINS, trajectories were aligned relative to the crystal structure.

In order to ascertain the long-time stability of the system, the RMSD relative to the crys-
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tal structure was determined and was found to be below 2 Å throughout, confirming the

observed stability and structural integrity of the protein. For the analysis, the distance be-

tween the Xe atom and the center of each pocket (Xe1 to Xe4 as found in the X-ray reference

structure27) was determined for all configurations and all trajectories which provides a first

clustering. Then the Xe atom in a particular snapshot was assigned to the pocket for which

the distance between the current location and the center of each pocket is lowest. This yields

a discretized trajectory. From this it is possible to estimate the relative occupation (qPINS

or qMD) of each pocket Xei along the trajectory of interest. In order to compare the relative

efficiency of sampling, a boost factor R of PINS over MD is defined as R = qPINS

qMD
. Figure

10 shows R for the Xe atom in any of the 4 different starting positions. As sampling of the

protein interior is of concern here, events in which the Xe atom remains in the initial pocket

are not considered. Furthermore, situations in which Xe escapes to the solvent are also

discarded. Red bars with a “∞ symbol” correspond to transitions which are not sampled at

all using conventional MD (i.e. qMD = 0), and for which PINS finds transitions. The results

show that PINS increases the sampling efficiency by a factor of 2 to 10. Furthermore, for 3

of the 4 simulations one transition which was not sampled using MD is sampled with PINS

(pockets Xe4, Xe2, Xe3 when starting from Xe2, Xe3, Xe4, respectively). Hence, overall

PINS samples transitions more effectively.

As R not only reports on the number of transitions but also on the actual occupation of

particular pockets, the transition count matrices were also determined (Table 3). These

matrices were built using the full data from the MD and PINS simulations with snapshots

taken every 1 ps. With PINS more frequent transitions from or to pocket Xe3 are found,

which is rarely and poorly sampled with MD. Another interesting observation is that PINS

simulations allow direct Xe1↔Xe4 transitions. Analysis of the 300 K to 350 K replicas sup-

ports that this only occurs for replicas run at higher temperatures. Finally, it is also noticed

that the transition matrices are near-symmetric.
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Figure 10: Ratio between the relative occupation of each pocket (y−axis) defined as R =
qPINS
qMD

. Values of R > 1 mean that PINS is more efficient than MD. R = ∞ denotes situations
where the corresponding pocket was not sampled by MD simulations starting from a given
initial pocket.

Table 3: Transition matrix estimated for MD (left) and PINS (right), using
4 simulations of respectively 100 and 96 ns, each starting in one of the four
pockets. The transition boost provided by PINS is evident, and the effect of
high temperature replicas allows for example direct jumps Xe1↔Xe4, unobserved
with MD.

MD PINS
Xe1 Xe2 Xe3 Xe4 Xe1 Xe2 Xe3 Xe4

Xe1 · 66 8 0 · 240 30 610
Xe2 68 · 38 66 234 · 40 112
Xe3 12 40 · 0 34 40 · 2
Xe4 0 54 0 · 620 94 4 ·

The capability of PINS for sampling low probability (transition) regions connecting the

pockets can be directly visualised. For that, coordinates of the Xe atom are extracted, and

the normalized probability distribution ρ(x, y, z) at a given point (x, y, z) is evaluated on a

3D grid with resolution 0.5 Å, see Figure 11 for simulations with Xe initially in Xe4. The

densities shown are for ρ(x, y, z) = 10−5. This analysis confirms the results from Figure 10

and Table 3, i.e. that the Xe3 pocket is poorly sampled by MD, whereas PINS explores this

region of the protein. It is also demonstrated that PINS samples the transition region more

extensively, e.g. the Xe4↔Xe2 and Xe1↔Xe2 transitions (see upper- and bottom-right parts
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of the isosurfaces).

Figure 11: Left: Myoglobin with its heme functional group. Color code for the protein
secondary structure is purple and blue for α and 3-10 helices, cyan and white for turn and
coil, respectively. Right: Isosurface of normalised probabilities (ρ = 10−5) to find the Xe
atom at a given grid point, and definition of the 4 Xe pockets. Blue surface for MD, red
for PINS. Built using the 100 ns and 96 ns long simulations. For simulations starting in
pocket Xe4. PINS samples pocket Xe3 not explored with conventional MD. The transition
channels Xe4 ↔Xe2 and Xe1↔Xe2 are also more widely sampled when using PINS than
with standard MD.

From the probability distribution functions P (x, y, z) the relative stabilization energies of Xe

in the 4 pockets can be determined and are summarized in Table 4. The MD results are ob-

tained from inverting P (x, y, z) ∝ exp(−β∆Fstab(x, y, z)) and for PINS the post-processing

procedure, as described in the Methods section, was applied (see Equation 8). The PINS

results compare quite favourably with those from an earlier study68 (values also reported in

Table 4 for comparison) based on a 5 ns simulation, with relative absolute differences ranging

between 0.1 and 0.6 kcal/mol. Binding free energies from the present MD simulations are
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Table 4: Stabilization free energy ∆Fstab (kcal/mol) for the 4 Xe pockets, esti-
mated for the MD and PINS simulations, and compared with the Implicit Ligand
Sampling results from Ref.68. The 95 % confidence interval was estimated using
bootstrapping, dividing data in 10 sets.

∆Fstab (kcal/mol)
MD PINS Cohen et al.68 Exp.68

Xe1 −4.4 ± 0.1 −6.2 ± 0.1 −6.4 −5.1
Xe2 −2.6 ± 0.4 −4.6 ± 0.3 −5.2 −4.5
Xe3 −3.7 ± 0.3 −5.6 ± 0.1 −5.1 −4.6
Xe4 −4.3 ± 0.3 −5.6 ± 0.2 −5.5 −4.4

somewhat too low which may be related to under-sampling in the MD simulations although

the aggregate simulation time is 400 ns (i.e. 100 ns per initial Xe placement). It should be

recalled that implicit ligand sampling68 carries out simulations without the guest molecule

present (i.e. the empty protein) and coupling between protein and ligand dynamics is absent.

Also, there is little guarantee that large energy barriers will be sampled accurately which

leads to overestimated energy barriers. Given the considerably larger amount of data from

the present simulations (aggregate of 400 ns for PINS) compared to the previous study68

(5 ns of MD with Implicit Ligand Sampling), it is expected that the present stabilization

energies ∆Fstab are more representative.

Finally by extracting the free energy along the path connecting two pockets, it is also possible

to estimate the transition barrier free energies from the PINS simulations. For the Xe1↔Xe2

transition the barrier height is estimated to be 4.4 kcal/mol and for the Xe2↔Xe4 transition

it is 3.9 kcal/mol, corresponding to typical transition times on the sub-nanosecond time scale

according to transition state theory. This is also reflected in the MD transition count matrix

from Table 3 (left), where 120 transitions are found in total for the Xe1↔Xe2 transition and

the number of transitions for the Xe2↔Xe4 is slightly larger (134), indicative of a lower free

energy barrier. These results were confirmed for the Xe2↔Xe4 transition by using umbrella

sampling simulations12. The progression coordinate for this transition was the distance be-

tween the center of gravity of the Phe138 carbon atoms and the Xe-atom. This coordinate

32



was found to be useful in previous simulations of transition paths for CO between these two

pockets for which a barrier height of 6.0 kcal/mol or larger was found depending on the

initial protein structure.69 For Xe, which is expected to interact less strongly with the pro-

tein environment, a barrier height of 4.5 ± 0.4 kcal/mol was obtained using WHAM70. This

agrees favourably with the estimate of 3.9 kcal/mol from PINS simulations, which further

validates the implementation and analysis protocol.

Summary

The present work describes the implementation, analysis and application of PINS to two

systems of different complexity: finding compact structures of deca-alanine in implicit and

explicit solvent and Xenon migration in Myoglobin. For deca-alanine, compactification to

the expected α−helical structure in implicit solvent was found to occur more rapidly by

one order of magnitude with PINS and PT compared to MD simulations. For (Ala)10 in

solution conflicting earlier results26,51 were resolved and are most likely related to the need

to use the CMAP correction with CHARMM22 or CHARMM36 when studying populations

of different peptide conformational states. The present work (see Figures 8B, D, F) confirms

experimental results from NMR spectroscopy on solvated alanine-repeats up to (Ala)7 which

found predominantly extended PP-II structures, some hairpin structures but no α−helical

conformations.35

The third application considered Xenon atom migration in the internal cavities of Mb. PINS

extensively samples the 4 experimentally known Xe pockets and the transition regions be-

tween them. This contrasts with MD simulations which provide little information about

barrier crossings for comparable simulation times. PINS yields estimates for Xe-binding free

energy comparable to alternative methods such as implicit ligand sampling.68 The height of
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the Xe4↔Xe2 transition barrier was estimated to be ≈ 3.9 kcal/mol from the PINS-unbiasing

procedure and was confirmed using umbrella sampling simulations.

Finally, it is pointed out that PINS could be further generalised. In Equations 4 and 5 the

probability density ρ(X) and the partition function Z were defined by only considering the

potential energy V (X). Instead of V = Epot it is possible to use a classical Hamiltonian

H = Ekin + Epot where Ekin and Epot are the kinetic and potential energy, respectively.

Then it is possible to define K Hamiltonians instead of K temperatures for the replicas,

each Hamiltonian thus containing e.g. different biasing potentials. The two Equations 4 -

5 are still valid, so from the algorithmic point of view the only necessary modification is to

broadcast the total Hamiltonian between the replicas instead of the potential energy.
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