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1 RMSD analysis for (Ala)10

Figure S1 illustrates the RMSD fluctuations during folding of Ala10, for a 100 ns long MD

simulation. The GENBORN implicit solvent model was used. The reference structure with

RMSD = 0 is the folded α−helix, cf. Figure 1 from the main text. After 15 ns one can

observe a majority of quasi folded states, with a RMSD of ≈ 2 Å.
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Figure S1: RMSD fluctuations observed for folding of (Ala10), 100 ns of MD with GENBORN
solvent. The reference structure is the α-helix from Figure 1 from the main text.

S2



2 K-means clustering on the RMSD distributions

Table S1: RMSD clustering of the combined MD, PT, and PINS structures from Figure 2
from the main text, around 6 centres. After obtaining the cluster centres, each structure is
assigned to the closest of the 6 centres.

centres (Å) pop. MD (%) pop. PT (%) pop. PINS (%)
0.3 15.5 38.7 22.8
1.2 10.1 3.7 4.3
1.9 53.7 40.5 52.9
2.7 15.0 3.0 5.7
3.5 2.7 11.8 14.1
4.8 3.0 2.3 0.2

K-means clusteringS1–S3 is a straightforward method for characterizing the diversity of

sampling based on a progression coordinate, which is the RMSD in the present case. Figures

S2 – S3 illustrate the procedure used for choosing the number of clusters for performing the

clustering.

Figure S2 estimates which proportion
∑K

i=1
σ2(Xi)

σ2(X)
of the total variance of the RMSD

dataset (denoted as X in the following equations) is reproduced when considering K clusters:

for K → +∞ the total variance of the dataset is described. Here, the sum of the variance

around each cluster is σ2(Xi) and the total variance of the original dataset is σ2(X). It is

commonly observed that at some point increasing the number of clusters does not apprecia-

bly improve the variance description, and the value of K after this point is considered an

acceptable value of k for the k-means clustering. The detection of such an inflection angle,

is referred to as “The Elbow Method”.S4 Although this inflection point may be challenging

to locate in some casesS5 for the data analyzed here those points are easily found as k = 6

for MD and k = 4 for PT and PINS.

Figure S3 counts the sum of squares of the RMSD X within each group defined around
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a cluster (WSS): this time for K → +∞ this WSS tends to 0. It is estimated according to

WSS =
K∑

n=1

P∑
p=1

(Xp −Xn)
2 (1)

where K is the number of clusters allowed for the k-means clustering, P is the total number

of X points around a cluster k, Xp the RMSD value of point p and Xk is the RMSD value of

the centre of the cluster k. The results from the previous Figure S2 are confirmed by Figure

S3, i.e. values of k = 6 and k = 4 seem to be a reasonable choice for performing the k-means.

For those reasons it was decided to use k = 6 in all k-means analyses performed for the

present study (see Table 4 from the main text and Table S1). Indeed this value of 6 appears

to be required for describing well the RMSD distribution of the MD dataset, to which PT

and PINS are compared, so it is practical to use the same k for the three methods.

But as the previous plots suggested k = 4 for PT and PINS, one could argue that

providing k = 6 for those two methods adds an unnecessary number of clusters which

may reduce the statistical significance of the results. Table S2 shows results of a k-means

clustering with k = 4: when compared to Table 4 from the main text it is noticed that

the 4 most populated centres are close in RMSD and then it could be concluded that using

k = 6 instead of k = 4 for allowing a precise comparison with MD does not invalidate the

discussion from the Applications section.

Table S2: Results of a k-means clustering of the RMSD data from Figure 2 from the main
text, for PT and PINS with k = 4 as suggested by Figures S2 – S3. Results are similar to
those with k = 6 in Table 4 from the main text.

centres (Å) pop. (%) centres (Å) pop. (%)
0.3 40.0 0.3 22.8
1.9 43.7 1.2 4.4
3.4 10.7 1.9 55.6
4.2 5.6 3.4 17.2
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Figure S2: Proportion of the variance of the RMSD dataset described by N clusters, for the
20 ns long simulations from Figure 2 from the main text. The asymptotic behaviour for
K ≥ k indicates that k clusters are apparently enough for describing accurately the RMSD,
with k = 6 clusters for MD, and k = 4 clusters for PT/PINS.
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Figure S3: Evolution of the total WSS (Within groups Sum of Squares) when increasing the
number of clusters k for the k-means clustering, applied to the 100 ns long implicit solvent
simulations from Figure 2 from the main text. Values of k = 6 and k = 4, for respectively
MD and PT/PINS, look reasonable, as adding more clusters does not reduce the overall
WSS.

S6



3 2D density estimation using KDE, and MEPs finding

method

The RS6 package gdistanceS7 provides classes and functions to calculate various distance

measures and routes in heterogeneous geographic spaces represented as grids, but it is pos-

sible to apply the algorithm to any surface. The shortestPath() function was used for

finding the Minimum Energy Path (MEP), based on the DijkstraS8 algorithm.

The Dijkstra algorithm expects no discontinuity on the grid when searching for a path:

when building a surface using a standard 2D Histogram (∆F (ξ, α) = −RT ln(ρ(ξ, α)) , see

Figure S4 in red for an example with deca-alanine) the transition areas are sometimes sam-

pled poorly, and the application of the path finding algorithm may be challenging. For this

reason, Kernel Density Estimation methodsS9,S10 were used for providing a trustful interpo-

lation of the ∆F values at poorly sampled grid areas (see Figure S4 in black). Figure 8 A

to F from the main text are examples of such interpolated KDE surfaces.
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Figure S4: Free Energy contour plots built using a 2D Histogram (red) or on a 2Dim Kernel
Density Estimation (black), using the end-to-end distance (x−axis) and the α-helix content
(y−axis), for Ala10 MD simulations at 300K in implicit GENBORN solvent. The sparsity of
the contour when using standard histograms (red) justifies the use of the KDE method for
interpolating results (black), as one can see on Figure 8 A from the main text.
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4 Calculation of the α-helical content

In order to build meaningful 2D free energy surfaces for deca-alanine, it is required to use as

coordinates two properties which are easy to map to real numbers. It was decided to use the

end-to-end distance ξ between carbonyls’ carbons from the first and last residue (see Figure

1 from the main text), and a helicity score α detailed below. Those two coordinates were

already successfully used for investigating the folding of the deca-alanine by Hénin et al.S11

and implemented in the colvars package.

The α-helical content for the N+1 residues N0 to N0+N is calculated using the formula:

α =
1

2(N − 2)

N0+N−2∑
n=N0

angf
(
C(n)

α ,C(n+1)
α ,C(n+2)

α

)
+

1

2(N − 4)

N0+N−4∑
n=N0

hbf
(
O(n),N(n+4)

)
(2)

where the scoring function angf(...) for the Cα − Cα − Cα angle is defined as:

angf
(
C(n)

α ,C(n+1)
α ,C(n+2)

α

)
=

1−
(
θ(C(n)

α ,C(n+1)
α ,C(n+2)

α )− θ0
)2

/ (∆θtol)
2

1−
(
θ(C

(n)
α ,C

(n+1)
α ,C

(n+2)
α )− θ0

)4
/ (∆θtol)

4
(3)

and the scoring function for the hydrogen bonding, hbf(...), is defined using:

hbf
(
O(n),N(n+4)

)
=

∑
i∈O(n)

∑
j∈N(n+4)

1− (|xi − xj| / hbcut)
6

1− (|xi − xj| / hbcut)8
(4)

where θ0 = 88◦ and ∆θtol = 15◦ are respectively reference and tolerance values of the

Cα − Cα − Cα angle ; and hbcut = 3.3 Å is the cutoff value under which a hydrogen bond is

defined.

The final value of α maps to a real number between 0 and 1. When combined to the

ξ end-to-end distance, one can build meaningful 2D surfaces, as seen in Figure 8 from the

main text.
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5 ∆F along the MEPs in explicit solvent Ala10 simula-

tions

Figure S5 shows the free energy extracted along the four MEPs represented as colored lines

in Figure 8 B from the main text. The barriers between points 2–3 and 4–5 are approxi-

mately of 0.4 – 0.5 kcal/mol, making transitions between those points highly probable. The

free energy profile for paths 4–1 and 4–3, respectively connecting extended states to the

β-hairpin and α-helix conformations, are shown on Figures S5b and S5c. The free energy

change (∆∆F ) is respectively of 2 and 1.25 kcal/mol emphasizing again the easy conforma-

tional changes during the simulation.
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(a) ∆F between points 2 and 3 from Figure 8 B
from the main text.

(b) ∆F between points 4 and 1 from Figure 8 B
from the main text.

(c) ∆F between points 4 and 3 from Figure 8 B
from the main text.

(d) ∆F between points 4 and 5 from Figure 8 B
from the main text.

Figure S5: Free energy of the paths (∆F in kcal/mol) displayed on Figure 8 B from the main
text. The two dramatic changes in panel (c) are most probably errors either from the KDE
smoothing of the MEP finding algorithm and should not be considered during analysis.
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6 Effect of post-processing

The effect of the post-processing procedure is to increase convergence of simulations by en-

riching a given analysis state by bringing information from other states (for example higher

temperatures). The procedure is introduced in the article Section “Computational Methods”.

Figure S6 illustrates the effect of post-processing on a 2-dimensional Ala10 FES, built using

the previously introduced α-helical content and the end-to-end distance ξ. Fig.S6 (Left)

uses data from replica at 300K without use of the post-processing procedure, while Fig.S6

(Right) uses the same data but this time the post-processing procedure was applied.

The information brought to the 300 K replica from higher T replicas allows a more accurate

sampling of the high energy configurations characterised by extended and poorly helical

configurations.

Figure S6: Effect of PINS post-processing for the Ala10 FES: the left Figure uses data
from the replica at 300K without post-processing, while the right Figure is based on post-
processing. Colour legend corresponds to the free energy given in kcal/mol.
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