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Abstract 

Recent advances in computational resources and the development of high-throughput frameworks 

enable the efficient sampling of complicated multivariate functions. This includes energy and 

electronic property landscapes of inorganic, organic, biomolecular, and hybrid materials and 

functional nanostructures. Combined with new developments in data science, this leads to a 

rapidly growing need for numerical methods and a fundamental mathematical understanding of 

efficient sampling approaches, optimization techniques, hierarchical surrogate models, coarse-

graining techniques, and methods for uncertainty quantification. The complexity of these energy 

and property landscapes originates from their simultaneous dependence on discrete degrees of 

freedom – i.e., number of atoms and species types – and continuous ones – i.e., position of atoms. 

Moreover, dynamical behavior governed by complex landscapes involves a rich hierarchy of 

timescales and is characterized by rare events that often are key to understanding the function of 

the materials under investigation. 

To make significant advances in the crucial field of complex energy landscapes, we identify 

scientific and mathematical challenges whose solutions impact fields spanning from machine 

learning to materials science and chemistry to large-scale computational simulation. This 

potential impact includes the discovery of new materials with novel properties, enabling 

simulations across increasingly larger length and time scales, and finding new physical and 

chemistry principles that guide how materials work. It also offers the potential for innovative 

insights into how complex machine learning models interpolate data and identify patterns, and to 

develop new methodologies describing uncertainty in computational models and efficiently 

propagating that uncertainty through different models and scales. We identify a range of key issues 

in the field, along with promising directions to make significant progress. 

1. Optimization Methods 

Much of the discovery of novel materials structures and processes is obtained through the use of 

optimization methods to explore complex energy landscapes. In past decades, the development of 

optimization methods proceeded mostly independently in mathematics, engineering, and physical 

sciences. However, advances in optimization methods over the last decade, such as the 

development of interacting particle methods and surrogate models, illustrate the benefit of 

multidisciplinary research efforts. Also, the rapid increase in computational power has led to an 

explosion in available data and the capability to create high-dimensional models based upon this 

data, e.g., reactive force fields and machine-learning models. To reap the benefits of these 



2 
 

developments requires both a better understanding of the mathematical properties of current 

optimization methods and the development of new and improved optimization methods that 

specifically incorporate problem specific knowledge. Many theoretical questions remain 

unanswered. 

Current status of optimization methods. Optimizers can be classified into local and global 

optimization methods. Local optimizer methods are based on gradient descent and Newton 

methods such as BFGS. Local optimization methods are often used to identify the optimal structure 

of materials, saddle points for reaction pathways, and phase transformations. Global optimization 

methods facilitate structure and composition searches for materials and the selection of model 

parameters. Several global optimization algorithms are presently available and include methods 

such as genetic algorithms, particle swarm, basin hopping, covariance matrix adaptation evolution 

strategy, and Gaussian Process Regression (GPR). Different algorithms employ different strategies 

to achieve a balance between exploration and exploitation. Exploration is performed by making 

significant changes to the structure, which can move between basins, while exploitation is 

performed by making small changes in a basin.  

Optimizers can also be classified into single and multi-particle methods. Single particle methods 

evolve with no inter-particle communication as in steepest descent or Monte Carlo methods. On 

the other hand, multi particle methods employ multiple parallel processes communicating among 

each other, and include genetic algorithms or parallel replica exchange. 

Use of prior information and surrogate models to accelerate convergence. The configurational 

spaces of interest are often high-dimensional and typically possess multiple maxima, minima, and 

saddle points scattered around in the configurational space. However, we are generally interested 

in just one or a few of those extrema, and as a result the typical strategy of using a random search 

is highly inefficient. The exploration can be greatly improved by using some external information. 

For example, in the case of geometry optimization we may improve the convergence rate by 

exploiting chemical intuition, databases, and previous calculations. Surrogate models constructed 

using machine learning can also be used to accelerate searching by providing good initial estimates 

of local minima. 

Suggestions for future improvements. As we are considering larger and more realistic systems, 

efficiency is critical for the global optimization methods. Successful attempts will require the 

integrated efforts from a variety of subjects including applied mathematics, computer science, 

physics, chemistry, and biology. One way to improve the efficiency is to harvest the vast prior 

knowledge of chemistry and materials that has been previously reported or learned on-the-fly.  

One way to harvest this knowledge could be to mine existing data and determine structural motifs 

such as bonding, octahedra, clusters, molecular shapes that can be identified with features of the 

energy landscape, such as local minima or maxima. This information could then be used to guide 

Monte Carlo searches or genetic operators in structure optimization.   

Most materials need to be represented by many observables. In practice, objective functions that 

include multiple properties, such as energy, forces, geometries are often needed for better 

optimization. Some of these properties are highly correlated. For that reason, it is necessary to 

make a preprocessing of the data to remove redundancy, renormalize different units and reduce 

intrinsic noise. Additionally, a metric is required to measure structural similarities (relation 
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between structure and property prediction) in combination with clustering methods in order to 

increase the diversity of the training set as much as possible and also to detect possible over or 

under coverage regions in the configuration/parameters space. 

Significant opportunities remain for the importation and application of tools from the mathematical 

sciences. For instance, potential fitting methods could be enhanced by applying a fully Bayesian 

framework. Currently, loss functions are quadratic, all data points are treated equally, and 

regularization of the coefficients is performed in an ad hoc manner. Introducing a prior distribution 

and an assumed observational noise on the measurements would allow for a statement of the 

problem in a probabilistic framework. In this setting, the optimization problem then corresponds 

to obtaining the maximum a posteriori estimate. While the observational noise may be somewhat 

artificial, we can then consider the behavior of the coefficients as we reduce the noise. 

A generic mathematical formulation of the interacting-particle (replica) methods used in the 

community should also be developed. Common features of mutation and evolution steps are 

apparent in all these algorithms. Such a mathematical study would establish well-posedness of the 

algorithms, e.g., existence of a minimizer, convergence to the minimizer, and stability, and clarify 

the necessary conditions to obtain a solution. The analysis would also relate performance to 

parameter and algorithm selection. This work would guide practitioners and could inspire new 

methods. 

While many positive results have been obtained with machine learning potentials, questions 

remain. In particular, though the potentials may pass standard statistical tests such as cross 

validation analysis, how these potentials extrapolate to unknown data remains unclear – is there 

overfitting? If there is overfitting is it catastrophic? These questions could be explored in carefully 

designed numerical experiments where the potentials are “stress” tested by validating at points 

very different from the training data. 

2. Challenges for Machine Learning of Energy Landscapes 

The field of machine learning (ML) was conceived in the mid-20th century and in the past 30 years 

has seen burgeoning use in the fields of mathematics, physics, chemistry, and materials science. 

The goal of ML is to bypass expensive calculations from various physical theories with minimal 

loss of accuracy. Landmark successes of ML methods include learning the exchange-correlation 

functional in density functional theory, obtaining accurate atomization energies, and screening 

databases of materials and molecules for application in technology and drug design. These 

successes have been achieved using several different approaches to ML including, among others, 

regressions models and neural networks (NNs). Despite this success, there is no good way to 

establish which model performs better on a given problem in advance and the choice depends 

mainly on the shape of the dataset and the desired output. Kernel based methods can be solved 

exactly since they can be expressed in a closed mathematical form with the use of a regularizer, 

but also can be slow to solve, since large matrix diagonalization is involved. NNs are an attractive 

alternative to represent general nonlinear problems, though they need a large dataset to achieve 

good predictions and are harder to train. A mathematical foundation for many ML models is 

missing and the possibilities in this direction are potentially huge and with applications beyond 

materials science. We identify five primary challenges that are relevant to our community. The 

first two are general for the field of machine learning, while the latter three are specific to the 
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problem of learning effective potentials to describe the energy landscapes of materials and 

molecules. 

Learning from the Machine. Machine learning is clearly a powerful computational tool, which at 

its core is simply a clever procedure for fitting data. Black-box fitting tools can be useful, but we 

are also interested in questions about why the data has the form that it does. As the complexity of 

the ML model grows, the ability to interpret the fit and learn simple relationships that explain the 

data becomes increasingly difficult. The community would benefit tremendously from tools and/or 

procedures that could provide understandable structure from complex ML models. As well as 

being useful for providing scientific understanding, it would be helpful to inform researchers about 

the quality of the descriptors being used and how to optimize the hyperparameters in the model. 

Examples such as autoencoders could be useful for extracting concise information from a network. 

Hyperparameter Determination. To apply machine learning requires a "machine", which is a 

mathematical model defined by a set of parameters that can be varied to achieve a specified 

performance objective, and some optimization method to determine the optimal values of such 

parameters. In the case of a NN, the machine is the network of layers and nodes, the parameters 

are the weights of the connections and the optimization method would be a gradient descent 

algorithm. Beyond the optimized fitting parameters constrained by data, there are a smaller number 

of hyperparameters controlling structural aspects of the machine: e.g., the number of layers and 

nodes, choice of activation functions, network connectivity, etc. While ML’s success is due to 

algorithms and hardware that can determine the fitting parameters efficiently, e.g., TensorFlow 

and Theano, we lack efficient methods for the determination of hyperparameters. There is strong 

demand for efficient hyperparameter optimization since the accuracy of the model is greatly 

influenced by hyperparameter choice. Current approaches include grid searches or random 

searches which are simple to implement and highly parallelizable, but are not particularly efficient. 

The computation of gradients with respect to hyperparameters can be very expensive – or even 

impossible – hence, future development of efficient gradient free techniques will be key to 

continued high impact of machine learning.  

Descriptors. In the context of energy landscapes of materials, key to any ML approach is an 

appropriate choice of input descriptors which encode representative information about the local 

environments and/or interactions between atoms, but for practical purposes, are computationally 

efficient and mathematically simple. Current descriptors include the Behler-Parrinello (BP) 

symmetry functions, smooth overlap of atomic positions (SOAP), and bond lengths between 

atomic clusters. A bottleneck for future work is the lack of a systematic study of which descriptors 

work best for different systems. An important consideration is growth in complexity of the 

descriptors with the number of elements. For example, BP symmetry functions encode the local 

environment in tens of inputs to the neural network, while SOAPs generate thousands of inputs. 

Existing descriptors can scale combinatorially with the number of elements in the system. An 

important open question is whether or not this increasing complexity is necessary for the 

construction of accurate machines.  

Long Range Interactions. Current methods for constructing machine-learned energy functions in 

materials start with local atomic descriptors; however, a wide variety of systems involve 

interactions between charged species, including charge transfer. To improve the accuracy and 

impact of ML potentials, we need to include our physical intuition about charged interactions that 
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are already captured in variable charge empirical potentials and reactive force-fields. This provides 

a unique challenge, as charge interactions are long ranged, while ML potentials are short ranged 

by their very nature. “Hybrid” potentials that combine long-range interactions and machine-

learned interactions – along with the algorithms to optimize them – are required to apply ML 

potentials for a wide variety of important material systems including complex oxides, interacting 

metal/oxide materials, and any system where charge transfer controls material properties. 

Challenge of Multicomponent Systems. Handling multicomponent systems with varying size and 

chemical composition requires non-standard network architecture as the input dimensions cannot 

be fixed. Variable-size sentences and images are usually preprocessed by padding with constants, 

which are later masked during training; however, such an approach runs counter to basic physical 

and chemical intuition. Implementation of masking for neural networks is an area of active 

research, and the backpropagation procedure must be altered to train composition-specific models 

simultaneously without padding. 

Uncertainty Quantification of ML Models and Dealing with Sparse Data. The most common goal 

for a ML potential is to reproduce the energy of atomic structures as compared to a higher level 

theory, such as density functional theory; moreover, producing a physically reasonable description 

is crucial for wide applicability. This is difficult without sufficient input data to span the high-

dimensional spaces of atomic structures. One sensible procedure is to fit forces as well as energies 

as there is more force data which provides additional information about the gradient of the 

landscape. Additionally, it would be helpful to provide physically-motivated limits for energies, 

such as a positive divergence as atoms approach each other and an asymptotic approach to zero as 

atoms become far apart. Moreover, by using ML techniques in the context of materials problems, 

we have the option of generating the data that is used to train the machine. To exploit this 

advantage, we need to address important mathematical and practical questions for different 

machines and problem classes: (i) How many, and which data points, should be generated in order 

to obtain a prescribed accuracy? (ii) What is the maximal accuracy that can be obtained with a data 

set of a given size? (iii) What are the techniques for identifying when the machine evaluation is 

likely to be erroneous? The answer to these questions would facilitate the creation of adaptive data 

generation where uncertainty is quantified so that when a part of configuration space is reached 

with sparse data and high uncertainty, new data can be obtained in an automated manner to retrain 

and reduce the error of the model to a specified level. 

3. Long-time dynamics 

Investigating the long-time dynamics of materials at the atomic scale is one of the fundamental 

challenges of contemporary computational sciences. While the problem is conceptually 

straightforward to solve, standard algorithms such as molecular dynamics exhibit poor parallel 

scaling, typically limited to 10-100ns of trajectory per day. As a result, the development of 

specialized techniques that are able to fully exploit petascale and future exascale computational 

resources is an active area of research. In the following, we review the state-of-the-art and highlight 

upcoming challenges that face long-timescale methods, focusing on three important aspects: the 

definitions of the effective coordinates in which the problem is cast, the problem of obtaining 

coarser models, and that of coupling between scales so as to extend the spatio-temporal reach of 

atomistically informed models.  Mathematically, these questions require careful understanding of 

Langevin-type dynamics related to such models.  These questions include understanding of exit 
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times from neighborhoods of local minima. Spectral analysis of the associated Laplace-like 

operators entering in the Fokker-Planck equation has been useful in finding lower-dimensional 

approximations to these models. 

Coordinates/simulation space. In complex systems, extracting long-time information often 

requires the definition of reaction coordinates or metastable states to accelerate sampling of 

configuration space. Distinct, but related, approaches have appeared in both the soft and condensed 

matter communities. 

In soft-matter systems, such as proteins or nucleic acids, defining good metastable states is non-

trivial because of the highly heterogeneous energy landscape. Techniques that learn these good 

collective descriptors from molecular dynamics trajectories have made great strides over the last 

few years, driven in particular by Markov State Models (MSM). However, the search for a general 

and automated workflow to identify descriptors is an outstanding challenge. Approaches that have 

shown early promise combine current methods with advanced machine learning strategies such as 

deep neural networks or autoencoders, though much work remains to incorporate these methods 

into modern simulation techniques. 

In contrast to soft materials, the metastable states of hard materials tend to be well defined in terms 

of the local minima of the energy landscape.  This regime has been well addressed by a variety of 

methods, including adaptive-Kinetic Monte Carlo (AKMC) and accelerated molecular dynamics. 

However, systems with strong kinetic heterogeneity, i.e., when both very fast and very slow 

processes coexist, remain challenging to simulate. 

Modern simulation techniques can recover performance by coarsening states into larger groups, 

but general application of this scheme will require robust methods to define states beyond the 

metastability criterion. In this respect, insights from the simulation of soft materials, including 

recently developed kinetic state definitions, offer a promising way forward. 

Coarse-graining. High-dimensional systems are often governed by low-dimensional dynamics. 

Coarse graining into a lower dimensional space introduces its own challenges.  Defining a low-

dimensional model requires the identification of appropriate ‘effective’ degrees of freedom and of 

effective interactions that are expressed in this reduced space.  

A key requirement is that coarse graining preserves fundamental quantities, such as 

thermodynamic or kinetics. Traditional approaches guided by physico-chemical intuition have 

been very successful, but do not allow for systematic improvement. Leveraging machine learning 

and data-driven approaches offers a promising solution, but full exploitation requires the 

development of advanced metrics for quantifying the quality of the approximation.  

Scale-bridging. Efficient mesoscale methods must be used when system sizes exceed what can be 

simulated with direct approaches (e.g., when modeling signal transduction at cellular scales or the 

annealing of irradiated microstructures (both ~100 μm)). The inclusion of atomistic information, 

without requiring a full atomistic simulation, is highly desirable to systematically improve model 

accuracy. Ensuring the accuracy of upscaling methods is challenging due to the lack of 

corresponding atomistic results, and timescale separations between the meso and micro scales. 

Robust UQ methodologies are therefore required that can flag when a mesoscale model is 
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stretching its validity range, and eventually trigger additional microscale simulations to preserve 

the prescribed accuracy.  

4. Surrogate models 

From excitation spectra to thermodynamic quantities. Thermodynamic modelling of advanced 

structural and functional materials typically requires free energy calculations of meV accuracy, 

i.e., in order to resolve phase transition temperatures to within a few Kelvin. Direct computation 

to these tolerances requires millions of independent samples of configuration space. High- 

throughput searches of the vast material space are thus restricted to zero temperature properties. 

This represents a severe limitation of these approaches to address real word engineering 

challenges. 

A promising solution is to employ surrogate models and efficient/enhanced sampling techniques. 

Presently, effective harmonic models are the method of choice due to the existence of analytic 

relations between the phonon (excitation) spectra and thermodynamic quantities. However using 

this relation for relevant operational conditions leads to unacceptable errors. The design of next 

generation surrogate models must therefore capture vibrational anharmonicity without sacrificing 

numerical efficiency nor interpretability. This is distinct from the objective of traditional force 

field fitting, which attempts to capture the full potential energy surface.  

Open questions are: (i) Can we formally define criteria for the optimal surrogate model and use 

this insight in the construction of such models? (ii) Are there mathematical tools to identify the 

most compact representation of anharmonic degrees of freedom? (iii) Can models of independent 

oscillators be constructed that capture the full high-dimensional distribution function? Possible 

research directions could include anharmonic Einstein models or local (e.g., Gaussian) basis sets 

as used in quantum chemistry. 

Knowledge transfer between disciplines. Active research in force field optimization and kinetic 

modeling offers the potential for synergy that enhances both methods: 

● Modern techniques of force field fitting have developed sophisticated similarity measures 

between configurations of atoms and molecules. Can these be used to accelerate the 

building of kinetic models in path sampling research?  

● Force fields are built to reproduce equilibrium statistics, but then are usually used to study 

mechanisms. Can we combine the study of paths and force field building by making force 

fields that are targeted to reproduce the path ensemble? 

Optimal inclusion of experimental data in surrogate models. Even for well characterized materials, 

experimental data is often too sparse for the construction of surrogate models. However, all 

practical uses of ab initio methods applicable to realistic materials have systematic errors. Thus, 

the experimental and ab initio data sets possess an intrinsic incompatibility which prevents a naïve 

combination when constructing surrogate models. Methods from the field of uncertainty 

quantification are a potential route to designing optimal measures to incorporate experimental 

data. The availability of such methods would significantly boost the predictive power and impact 

of high-throughput simulations. 

Can we learn something from the dynamical coarse graining community who regularly confront 

the problem of determining the relevant states in very high-dimensions? What is the relationship 
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between partitioning configuration space in order to build a fitting database and the basis functions 

used in the fit (which inherently provide a distance measure between points in configuration 

space)? Can the latter be used for the former in some consistent way? 

5. Efficient algorithms for spatially localized structural perturbations 

Existing ab initio electronic structure simulations have yielded, through years of development and 

improvement, results that are both accurate and efficient. These simulations provide the foundation 

for the construction and exploration of complex high-dimensional energy surfaces as well as 

constitute benchmark data for high level modeling activity. Many of the simulations depend on 

algorithms that assume structural uniformity and periodicity in one or more directions. Under these 

assumptions, results obtained for small regions at greatly reduced computational cost would then 

be applicable to much larger regions. However, there is a class of problems where structural 

perturbations, e.g., defects, occur either through intentional manufacturing or through natural 

processes. These structural perturbations can strongly influence the resulting properties of the 

material. The challenge is to develop methods and algorithms that allow one to leverage the 

computational procedures developed for structurally uniform material to create efficient and 

accurate simulations of structurally non-uniform materials.     

The general approach of combining efficient simulations of less complex problems with a 

correction step has already been used in the development of simulations of fluid and plasma 

motion. In particular, the general approach applied to tasks involving linear operators has been 

quite successful, e.g., variance of domain decomposition techniques. However, there is a 

considerable amount of work to be done in adapting and extending these procedures to the linear 

operators occurring in the context of materials simulation. In addition, these approaches could be 

applied not only at the quantum-mechanical level but also for coarse-grained models such as 

atomistic and continuum approaches. Two main challenges consist of adapting these techniques in 

such a way that the high accuracy requirements of materials simulation can be met and, just as 

importantly, determining how to integrate any of these developed procedures into existing 

simulation packages. For materials simulations based on density functional theory, the non-

linearity of underlying equations gives rise to a whole collection of mathematical and 

computational problems that must be addressed in order to utilize this general approach even more 

broadly. If such problems are successfully overcome, the resulting increase in computational 

efficiency would have a dramatic impact by providing high quality simulation data necessary for 

a wide range of activities associated with the characterization, design, and fabrication of materials 

with structural non-uniformity. 

6. Efficient Hessian estimation for accelerated local optimization 

A common feature in atomic-scale simulation is the search for local minima of a system – whether 

molecules, nanostructures, or bulk material – that has an O(1000) degrees of freedom. Gradient-

based methods are used extensively with density-functional theory, where Newton-based methods 

for optimization rely on estimation of the (inverse) Hessian. The algorithms start with no, or very 

little, information about the Hessian for the system, and constructing the Hessian matrix from 

changes in force with displacements or perturbation theory is prohibitively expensive. 

Acceleration in the convergence of local optimizers by including information about the Hessian 

has the potential to impact multiple areas: (i) Molecular systems with a range of stiffnesses from 

covalent bonds along the backbone to dispersion interactions between more distant atoms; (ii) 
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Weakly constrained portions of the system that arise from different interactions, such as a molecule 

that is weakly bound to the surface of a material; (iii) Soft long-range elastic interactions combined 

with stiff short-range interactions as relevant, e.g., for defects in materials. 

In all of these cases, we have physical or chemical intuition about the types of interactions that are 

present, and the structure of the Hessian; however, the optimization algorithms commonly used in 

solid state simulations do not take advantage of this intuition. The common feature across all of 

these systems is a wide spectral width in the Hessian along with significant “off-diagonal” terms 

for the interaction of atoms, while the algorithms instead start with an estimate of the Hessian that 

is diagonal and isotropic. Bottlenecks are:  

1. Constructing a model that better respects the internal structure of the problem by using 

internal coordinates rather than using the commonly employed Cartesian coordinates; 

2. Constructing a model of information about the Hessian for a given initial structure; and 

3. Providing standardized interfaces for widely-used software to take advantage of 

tools/modules that provide such optimization algorithms. 

We believe that significant progress is possible as the stiffness of atomic interactions is 

approximately known in many cases, and acceleration may not require highly accurate estimates 

of the Hessian to be effective. 

7. Benchmark problems  

Assessing the quality of novel simulation methods involves two crucial aspects: 1) comparing the 

algorithmic performance (e.g., execution time, number of iterations) against established methods 

on reference problems, and 2) assessing the accuracy of the results against a series of gold 

standards (i.e., well characterized and generally accepted) test problems established through 

extensive unbiased direct simulations. As of now, a large number of techniques to explore and 

characterize high-dimensional energy landscapes have been proposed, but it is uncommon to see 

systematic comparisons between methods, making it difficult for practitioners to clearly assess the 

tradeoffs in performance and error inherent to different approaches.  

Four major classes of computations are typically performed on such landscapes: optimization, 

dynamics, sampling, and approximation.  Optimization algorithms are used to find both energy 

minimizing configurations and saddle points. Long-timescale techniques are used to probe the 

dynamical evolution of the system. In order to extract thermodynamic information, algorithms that 

efficiently sample the Boltzmann distribution induced by the energy landscape are needed. Finally, 

approximation methods, from statistics and machine learning, are also often used to obtain 

computationally cheap surrogates for the true energy landscape.   

We therefore propose to adopt and publish nontrivial benchmark problems. This will serve two 

purposes.  First, it will allow one to select the algorithm that provides an optimal tradeoff between 

performance and errors. Second, it will allow method developers to verify that any newly 

developed algorithm is successful at solving well studied problems, guarding against method and 

software development errors in increasingly complicated codes. 
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We propose to formulate a detailed set of criteria by which test problems and sample output can 

be submitted to a publicly accessible website, such as http://optbench.org. For example, in order 

to insure the reproducibility of the benchmarks, all metadata, such as algorithm initialization, 

stopping criteria, and tolerances, along with notes on compilers and architectures used to generate 

the results, should be included. Benchmarks should include converged (to within predefined error 

bars) simulations on reference systems, e.g., first-passage time distributions for kinetics, 

equilibrium distribution functions for thermodynamics, in order to establish well-defined gold-

standards. The website should provide the capability to automatically convert all data to different 

formats (e.g., plain text, xml, html) to allow for easy comparisons. 

8. Uncertainty quantification 

The importance of uncertainty quantification (UQ) in the broad areas of materials research and 

drug design is ever increasing. The common toolchain consists of some of the following upscaling 

steps: DFT → force-field development → molecular dynamics → finite element/kinetic Monte 

Carlo → higher level applications, design, and optimization. 

Unfortunately, the provision of UQ information is not well established at the initial DFT level of 

this chain. This differs from most other areas of physics and engineering and is rooted in the 

specific challenges of the choice of the used functional for DFT calculations, as well as related 

numerical and modeling errors. Besides being unsatisfactory on its own, this also precludes almost 

all attempts of uncertainty quantification at subsequent stages of the upscaling chain and may 

affect both the predictive power of models and the ability to carry out design and optimization 

tasks reliably. Moreover, current practices focus on energy convergence, while recent studies by 

NIST show that convergence in energy alone may be insufficient to quantify numerical errors in 

DFT predictions. 

Challenges to advance the current state-of-the-art and impact broad areas of computational science 

include: 

1. Quantifying uncontrolled DFT errors: Establishment of community guidelines of “best-

practices” for DFT to determine data scatter – a simple estimate of DFT uncertainty – due 

to the chosen functional, basis set choice, and pseudopotential. At a minimum, one should 

compare at least LDA and GGA calculations due to their relatively low computational cost. 

2. Quantifying controlled DFT errors: Establishment of community guidelines of “best-

practices” for DFT with convergence studies for other quantities of interest, rather than just 

energy. Developers are encouraged to implement high-level routines to automate 

scientifically indicated routine tasks, e.g., a lattice constant or band gap optimization, to a 

given accuracy. 

3. Publication guidelines: A protocol for best-practice standards for DFT-simulations should 

be put forward as a recommendation to journals, e.g., guidelines for referees and 

organizations (NIST, IAEA, APS, ACS, etc.). Articles should provide sufficient 

information to reproduce the published results (e.g., providing input files as supplementing 

information or available in public repositories, see Section 9 Cyberinfrastructure). 

http://optbench.org/
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4. Benchmarks: The community needs to develop a small but sufficient number of 

benchmarks to test and assess DFT software, and best practices, see Section 7 Benchmark 

problems. 

5. Algorithms: Development of efficient algorithms to sample computational parameters, 

e.g., functional choice, k-point mesh, etc., to efficiently propagate uncertainty from DFT 

through material models. Overcoming this barrier offers the promise of making uncertainty 

quantification routine for a wide variety of material computations. 

6. Applying stochastic frameworks: Coarse graining problems and dynamical path problems 

are inherently statistical problems, so fits need to be robust to noise. Force field fitting 

problems appear to be noise free, but this is only in the statistical sense, as the limitations 

of model representation makes fits inexact. Is a stochastic framework still suitable for 

quantifying errors? 

9. Cyberinfrastructure 

Leveraging available computational resources on different platforms with high-throughput 

workflows requires increasingly complex simulation protocols. This complexity hampers not only 

the development but also the interdisciplinary exchange between fields. Therefore, a shared 

cyberinfrastructure ecosystem is essential to foster sharing data and methods, including several 

needs in software development. 

Optimization Algorithm Ecosystem: An extensible software framework for landscape searches and 

model optimization would advance the development and application of current and newly 

developed methods. Currently, users – whether amateurs or experts – have difficulty comparing 

different optimization approaches due to a lack of interoperability. An optimization algorithm 

ecosystem that could provide access to many different types of optimization methods and model 

representations for versatile applications can be leveraged for many of the challenges previously 

identified. Benchmarking requires spanning: one-particle methods, such as simulated annealing 

and basin hopping; many-particle algorithms, such as replica exchange/parallel tempering, genetic 

algorithms, and swarm algorithms; and frameworks such as Bayesian optimization and bandit 

approaches. In addition, new hybrid approaches to optimization would become possible, e.g., 

switching between and coupling of optimization methods in a nested way, or using active learning 

to make autonomous decisions on-the-fly on which optimization algorithms and surrogate models 

to use. If a range of model representations are included for (i) structures, ranging from molecules 

and clusters to fluids and crystals, and (ii) models ranging from empirical potentials to machine-

learning models, then the suitability of different optimization approaches for different problem 

domains can be established for the community. To be sustainable, software development will 

require modern software engineering principles and integration with various existing optimization 

and surrogate model packages (see Community Building below). Finally, integrating materials and 

model databases with the optimization ecosystem will synergistically increase the impact of both.  

Machine Learning Software for Energy Landscapes. There is a growing list of machine-learning 

software packages with overlapping feature sets. Keras, for example, is a high-level API for the 

construction of NNs using TensorFlow as the computational back end that is particularly attractive 

due to its continuous development and support by Google as well as its ubiquity across the ML 

community. However, since Keras was not developed with application to molecular and material 
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systems in mind, it lacks the flexibility to design variable hierarchies to learn features at different 

scales, and to extract derivatives for atomic forces. A ML software toolkit that builds upon the 

existing Keras functionality and TensorFlow efficiency, and extends it for the study of energy 

landscapes and related models, would provide an important tool for the study of materials. 

Databases. High-quality databases are necessary for exploring energy landscapes that benefit 

several key areas such as building atomistic and coarse grained force fields, validating and 

benchmarking new search and optimization algorithms, and accumulating prior knowledge for 

speed-up. Currently, there are some cases that the same distribution is used for testing a model as 

for training because of the lack of available credited databases. When transferability to different 

sampling distributions is desired, it necessitates the creation of combined databases to cover 

properties and observables. Additionally, quantitative measures of transferability are needed for 

proper evaluation. Several efforts of individual groups and small teams are providing databases 

for small molecules, nanoscale, and bulk materials, e.g., https://materialsproject.org, 

https://aflowlib.org, https://oqmd.org, http://www.crystallography.net/cod/, and 

https://materialsweb.org. It would be helpful for the community to have common API’s to access 

these database and to provide access to all these databases from a central webserver. Databases are 

also needed for the surrogate models such as for machine-learning and empirical potentials and for 

benchmarks, where the OptBench site http://optbench.org/ presents an excellent place to start. 

Community Building. The development of sustainable cyber-infrastructures requires community 

participation, continuity, and leadership. Open-source development, establishing software design 

principles, and coding best practices are essential for community participation in software 

development. Regular hackathons and coding workshops can provide the needed continuity for 

building, maintaining, and expanding shared code infrastructure and databases. These efforts can 

also serve as a vehicle for community building, training of the next generation of scientists and 

engineers, and broadening the participation of underrepresented groups. Funding of software 

development efforts, centers, institutes, and training by NSF and other agencies provides the 

needed leadership for the advancement of these cyber-infrastructures and ensures that we continue 

to harvest the benefits of these investments. 

https://materialsproject.org/
https://aflowlib.org/
https://oqmd.org/
http://www.crystallography.net/cod/
https://materialsweb.org/
http://optbench.org/

