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ABSTRACT: Spatial averaging Monte Carlo (SA-MC) is an efficient algorithm
dedicated to the study of rare-event problems. At the heart of this method is the
realization that from the equilibrium density a related, modified probability density
can be constructed through a suitable transformation. This new density is more highly
connected than the original density, which increases the probability for transitions
between neighboring states, which in turn speeds up the sampling. The first successful
investigations included the diffusion of small molecules in condensed phase
environments and characterization of the metastable states of the migration of the
CO ligand in myoglobin. In the present work, a general and robust implementation
including rotational and torsional moves in the CHARMM molecular modeling
software is introduced. Also, a procedure to estimate unbiased properties is proposed
in order to compute thermodynamic observables. These procedures are suitable to
study a range of topical systems including Lennard-Jones clusters of different sizes and the blocked alanine dipeptide (Ala)2 in
implicit and explicit solvent. In all cases, SA-MC is found to outperform standard Metropolis simulations in sampling
configurational space at little extra computational expense. The results for (Ala)2 in explicit solvent are in good agreement with
previous umbrella sampling simulations.

1. INTRODUCTION

Monte Carlo (MC) methods1 are widely used in modern
computer simulations to study high-dimensional, many-body
systems.2 One of their key features is their dimensional
tolerance that makes it possible to study large systems with a
significant number of degrees of freedom. Furthermore, when
applied to atomic systems, and by choosing an appropriate
statistical mechanical ensemble, MC simulations are useful in
estimating the partition function, from which thermodynamic
properties can be determined.
Despite their general utility, MC methods have practical

limitations, one of which is related to rare-event sampling,
which is a particular challenge.3 Conventional stochastic
methods typically use random walk procedures for generating
a statistical sampling of the desired equilibrium probability
distribution, useful for obtaining numerical estimates. For
systems in which configuration space is well connected,
standard techniques such as the Metropolis−Hastings
approach4,5 are efficient. However, often configuration space
decomposes into poorly connected subregions, which makes
realistic and exhaustive sampling problematic, and sampling
needs to be enhanced. Several strategies have been developed
in the past to address the rare event sampling problem,
including parallel tempering (PT),6 umbrella sampling (US),7

metadynamics,8 or replica exchange (RE).9 These techniques
either use a bias to drive the system from one region in
configuration space to another, neighboring region (US,
metadynamics), whereas PT and REwhich are related to

each otherexpand thermodynamic state space. A broader
overview of these techniques has been presented recently in the
literature.2,3 Broadly speaking, the available techniques fall in
one of the three following categories:

(i) Trial move optimizations, as the displacement vector MC
technique,10 or more recent studies specifically aiming at
MC simulations of proteins,11 but this kind of parameter
tuning requires some a priori knowledge about the
“shape” of the underlying potential energy surface.

(ii) Parallel tempering,6 replica exchange,12 and infinite
swapping methods,13−17 which are based on repeated
information exchange between copies of the simulation
system, which are run at different values of an external
control parameter (such as temperature). Lower-temper-
ature replicas are enriched with knowledge coming from
higher-temperature ones where high-energy barriers are
more easily crossed. Several strategies for defining the
tempering ensemble have been discussed.18−21

(iii) Through the addition of an external bias, such as a
supplementary potential for filling basins of energy
surface (metadynamics,8 flooding22,23), auxiliary proba-
bility density (Tsallis weight sampling),24−26 energy
smoothing methods,27−30 or constrained geometry
(umbrella sampling).7
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Spatial averaging MC (SA-MC) sampling belongs to this last
category, where a new family of probability density functions
are constructed.31 Until now, SA-MC has been applied to
model systems and in special applications31,32 such as the
diffusion of small molecules in condensed phase environments.
The aim of the present work is (i) to introduce a general and
robust implementation of SA-MC into CHARMM;33 (ii) to
generalize the available move set to include rotations and
torsions; (iii) to investigate the possibility of determining
unbiased thermodynamic properties from SA-MC in order to
extract approximate thermodynamic information from the
simulations; (iv) to apply SA-MC to the well-known problem
of finding the optimal geometry of Lennard-Jones clusters (it is
of particular interest to compare the efficiency in terms of the
number of MC-steps compared to Metropolis sampling and the
relative CPU requirements of the two approaches); and (v) to
apply SA-MC to the conformational sampling of the blocked
alanine dipeptide in implicit and explicit solvent.

2. COMPUTATIONAL METHODS
2.1. Spatial Averaging MC. In the canonical (NVT)

ensemble, the probability ρ(X) of observing a given system in
state X is related to its energy V(X) through

ρ = β−

Z
X( )

1
e V X( )

(1)

where X = X1,...,Xk is a k-dimensional vector of coordinates
(where k = 3 for MC or k = 6 for MD), populating a subset D
of the configuration space kN, Z is the canonical partition

function ∫=
⊂

Z
D kN

e−βV(X) dX, and β = 1/kBT is the inverse
temperature and kB the Boltzmann constant.
Monte Carlo (MC) methods1 are one powerful way for

sampling the high dimensional integral Z which runs over 3N
degrees of freedom for a general Euclidean 3-space and for an
N−particle system. The Metropolis−Hastings approach was
specifically designed for addressing this problem when
considering the canonical ensemble. Initially proposed for
sampling the Boltzmann distribution,4 it was later extended to
nearly all sampling problems.5 In practice, a system X is
stochastically modified leading to a new configuration Y. Based
on the energy difference ΔE = V(Y)−V(X) the probability of
accepting the new configuration is then

= β− ΔP min{1, e }E
acc (2)

For high energy barriers, the term e−βΔE is close to zero, and
the probability of accepting such a move is extremely low.
Previously introduced methods (PT/RE, US, metadynamics)
addressed this problem by proposing a physical modification of
the system (e.g., a set of temperatures for PT/RE). With SA-
MC, increased sampling is achieved by directly modifying the
underlying probability density function.31,32 In a one-dimen-
sional notation, if the density to be sampled is ρ(x), a new set
of modified densities is obtained by writing

∫ρ ε β= − +εx P y V x y y( , ) ( )exp( ( ))d
D (3)

where Pε(y) is a normalized probability distribution with
characteristic length scale ε. The parametrization of Pε(y) is
that of a Gaussian distribution with standard deviation ε.
Adjusting this parameter allows to adapt the biasing distribution
to the particular problem of interest. In practice, the
convolution of the true distribution with Pε(y) will decrease

the barriers of V(x) and hence accelerate sampling of
neighboring minima if ε is appropriately chosen. Furthermore,
the Gaussian transform of the potential is centered around ρ(x)
so the integrals of the original and the transformed density are
equal

∫ ∫ρ ρ ε=x x x x( )d ( , )d
D D (4)

Equation 4 is key to SA-MC, as it implies that
thermodynamic properties derived from the modified density
are related to those corresponding to the original density ρ(x)
for a given temperature. Let ⟨f(x)⟩0 be a thermodynamic
property (where the subscript 0 denotes an unbiased value)
estimated through an average of the form

∫
∫
ρ

ρ
⟨ ⟩ =f x

x f x x

x x
( )

( ) ( )d

( )d
D

D

0
(5)

By combining eqs 4 and 5, this average can be expressed by
using the modified densities:

∫

∫

ρ ε

ρ ε
⟨ ⟩ =

ρ
ρ ε( )

f x
x f x x

x x
( )

( , ) ( ) d

( , )d
D

x
x

D

0

( )
( , )

which can be simplified to

ρ
ρ ε

⟨ ⟩ =
ε

⎛
⎝⎜

⎞
⎠⎟f x

x
x

f x( )
( )

( , )
( )0

(6)

Hence, ⟨f(x)⟩0 is expressed as an accumulated average of the
instantaneous value f(x) weighted by the ratio between the
original and spatially averaged densities. Hence, the unbiased
thermodynamic property of interest can be estimated.
As an example the Helmholtz Free Energy F as a

thermodynamic function of state (ensemble NVT) is
considered. The unbiased value F0 estimated from a SA-MC
simulation is

ρ
ρ ε

= εF F
x

x
( )

( , )0
(7)

where Fε is a biased estimate of F. In practice, the value of F for
a given configuration x is estimated by counting the number of
occurrences n of the configuration over all the sampled
configurations N, which yields βF = −ln(n/N). By introducing
a reference value F0 for the free energy (for example the most
stable configuration sampled), and by choosing a correct metric
or reduced coordinates, it is possible to generate a surface of
ΔF = F − F0: such energy landscapes are a powerful way of
visualizing the configuration space and particularly useful for
localizing minima regions, barriers, and saddle points.34

As usual, when providing an estimate of any property it is
important to also quantify the underlying statistical error.
According to eq 7 errors in the estimates originate from (i) the
error on F when counting the configurations and denoted as
σ(0) = −kBT(σ(ρ(x))/ρ(x)), and (ii) the error in the unbiasing
ratio, directly related to the statistical variance on the spatially
averaged densities. This variance can be estimated according
to31

σ ε ρ
ρ ε

ρ
ρ ε

= − ε
⎛
⎝⎜

⎞
⎠⎟

x
x

x
x

F( )
( )

( , )
( )

( , )
12

(8)
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The total error on the estimate of F0 is

σ σ σ ε= +
N

1
( (0) ( ) )F

2
0 (9)

The N−0.5 dependency in eq 9 is inherent to stochastic
sampling methods.35 However, by dividing the data in k data
sets of a given size M (with N = kM) and by averaging over
such blocks, the error can be reduced. More precisely,
bootstrapping36−38 whereby only part of the datarandomly
chosen from the overall distribution sampled by these four
simulationswill be employed to estimate the error in the free
energy profiles.
2.2. Algorithm and Implementation into CHARMM.

The extension of SA-MC to multidimensional molecular
systems has been successfully applied to the diffusion of small
molecules (H2 and CO) in condensed phase environments.32

This first algorithmic implementation was limited to transla-
tional and rotational moves, which makes possible to study
diffusion processes. This will be generalized in the present work
to also allow treatment of the configurational space of systems
such as peptides and proteins.
The MC module39 in CHARMM33 is suitable for such an

implementation as it allows the user to define an arbitrary set of
moves for optimizing the sampling of a given molecular system.
The main types of moves are (i) rigid translations of one or
more atoms (RTRN), (ii) rigid rotations of one or more atoms
around a center of rotation: this center may be another set
consisting of one or more atoms, or the center of mass of the
rotating atoms (RROT), (iii) dihedral angles torsions (TORS),
and (iv) concerted rotations of dihedral angles (CROT). The
current implementation handles (i−iii) in the NVT ensemble
in explicit or implicit solvent. The present simulations were
carried out with both the Analytical Continuum Electrostatics
(ACE)40,41 implicit water model and the TIP3P42 explicit water
model.
Starting from a trial configuration ⎯→x0 of the system, a

Gaussian distribution for Mε sets of Nε configurations with
standard deviation Wε, centered around ⎯→x0 is generated in SA-
MC.32,43 The chosen MC movesuch as translation or
rotationis then applied to all Mε*Nε configurations and the
corresponding energies Enew

(m,n) are determined. Two sets of
Boltzmann weights are then computed, one for the old and one

for the new configurations: Eold,Boltz
(m,n) = e−βEold

(m,n)

and Enew,Boltz
(m,n) =

e−βEnew
(m,n)

. For each set Mε, the difference between the aggregated

old and new weights is determined: δm = ln(Snew
m /Sold

m ) where
Sm = ∑Nε EBoltz

(m,n). Adding up all the δm yields δ = (1/Mε)∑Mε δm
from which also a variance σ2 = (1/Mε(Mε − 1))∑Mε(δm − δ)2

can be computed. These quantities are then used for a modified
acceptance/rejection criterion ξ < exp(−β(δ + (σ2/2))) (see eq
2).
For each MC move type, the new configurations have to be

generated in the corresponding configurational space, such as
for angle moves in the angular space around the initial ⎯→x0. This
is accomplished as follows. (i) For a rigid translation, the
procedure consists of adding a Gaussian distributed random
number with zero mean and standard deviation Wε to the
coordinates of the atoms that were selected for a particular
move. (ii) For a rotation of a group of several atoms with
coordinates X, a random angle θ, normally distributed between
−θmax and +θmax, is generated and the corresponding new
coordinates are X′ = RX where R is a rotation matrix. (iii)
Dihedral angles, defined as the intersection of two planes
formed by four atoms, are also altered by drawing from a
normal distribution and again by finding the Euler rotation
matrix for the set of all atoms which are involved in the dihedral
angle.
The ratio ρ(x)/ρ(x,ε), as used in eqs 6 and 7, is required for

determining unbiased thermodynamic properties and is op-
tionally stored for each frame of the trajectory in a dedicated
file. This data can then be used in postprocessing from which
the unbiased free energy and other observables can be
estimated.

3. APPLICATIONS

In the following sections, SA-MC is applied to a range of three
typical rare-event sampling problems, and its efficiency is
compared to reference simulations, including standard
Metropolis sampling. First, the current implementation
together with the unbiasing procedure is tested on the double
well potential to obtain thermodynamic properties.31 In the
second example, the minimum energy structures of Lennard-
Jones clusters are considered with particular focus on how to
rapidly find the lowest energy configuration of such systems.
The third and final example is the study of the free energy
landscape of the blocked alanine dipeptide, which highlights the
efficiency of SA-MC. For the first two examples, the simulations
are performed with a dedicated code specifically written for the
application whereas the third system is studied with the
generalized CHARMM implementation described above.

Figure 1. Reconstructed energy surface for the double well potential. Solid lines are for the surfaces ΔF and dashed lines are the corresponding
densities ρ(x). Left panel for (Wε = 0.4 and Nε = 10), right panel for (Wε = 0.8 and Nε = 25). Color code: analytical results (black), Metropolis MC
(green), biased SA-MC (red), unbiased SA-MC (blue). a.u. = arbitrary units of distance.
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3.1. Double Well Potential. To illustrate the efficiency of
SA-MC but also the need for unbiasing when estimating
thermodynamic properties, first a one-dimensional problem
involving a simple double-well potential is studied. Explicitly,
V(x) = (x2 −√λ)2, where λ is the height of the barrier
separating the two minima, which are located at ±(λ)1/4.
Reduced units are used throughout which makes temperature
dimensionless and energies are given in units of kBT
For a given temperature, the probability density of sampling

x is ρ(x) ∝ exp(−βV(x)). Sampling V(x) is sufficiently
straightforward for low barriers that conventional MC yields
the correct free energy profile. Therefore, the sensitivity of SA-
MC to various choices of Wε and Nε (Mε = 1 in the present
application) can be tested. For a reduced temperature of
β = 0.75, 106 MC steps, and barrier heights between 1 and 10
simulations were carried out by using conventional MC and
SA-MC. For the latter, 0.1 ≤ Wε ≤ 1.0 in increments of 0.1 and
5 ≤ Nε ≤ 25 in increments of 5.
The free energy curves are reconstructed and unbiased as

explained in the computational methods part. For quantifying
the similarity between the sampled density ρα(x) and the true
normalized density ρ(x) a score Sα is introduced:

∫
∫

ρ ρ

ρ ρ
=α

α
−∞

+∞

−∞

+∞S
x x x

x x x

( ) ( )d

( ) ( )d (10)

where α = MC or SA-MC, respectively, and ρ(x) is the true,
normalized density. Hence, Sα measures the overlap between
the sampled densities and the true Boltzmann density. For
perfect sampling one should find S = 1.
Figure 1a is an example of reconstructing the FES for a

barrier height of ΔF = 2kBT, where the theoretical surface V(x)
and the results of the Metropolis sampling (which overlaps
ideally) are presented both with results from SA-MC with Wε =
0.4 and Nε = 10. Although SA-MC itself only poorly samples
the reference FES, unbiasing as discussed in the Methods yields
a very realistic FES (compare black and blue traces). Changing
the parameters to Wε = 0.8 and Nε = 25 (Figure 1b) leads to
almost uniform sampling with SA-MC (red trace). Despite this,
the reconstructed, unbiased FES can capture the shape of the
true FES although the free energy barrier is underestimated.
This already highlights that SA-MC can be effectively used
even with unoptimized parameters Wε and Nεto characterize
the true shape of the free energy surface although barrier
heights may only be qualitatively correct.

In a next step, the reconstructed (unbiased) FESs from SA-
MC are further characterized, in particular with regards to the
parameters Wε and Nε. For example, if the width Wε is too
large, all information about the existence of local minima is
washed out. Such considerations are of particular importance
when applying SA-MC to a problem for which the underlying
FES is incompletely or poorly characterized, that is, in cases
where the positions and relative stabilizations of the minima are
largely unknown. Figure 2a reports the similarity (estimated by
using eq 10) between the reference and the unbiased SA-MC
FES for barrier height λ = 2, 0.2 ≤ Wε ≤ 1.0 and 5 ≤ Nε ≤ 25.
For the present case, increasingWε improves the results initially
for most Nε. However, beyond Wε = 0.4, the overlap between
the reference and the SA-MC FES deteriorates. Hence, the
sampling becomes less reliable. This is even more so for a larger
barrier (λ = 5, panel b) for which small values of Wε give the
best results.
This finding can be interpreted as follows. Wε is the width of

the Gaussian distribution, that is, how far from the original
configuration a new one will be generated, whereas Nε is the
number of those additional configurations. Increasing both
parameters increases the number of configurations generated,
which are more and more distant from the original one,
resulting in a large variance which causes an inaccurate estimate
of the free energy. This is illustrated in Figure 3, where the free

Figure 2. Similarity between reconstructed and theoretical surface for (a) barrier of 2kBT or (b) barrier of 5kBT. Color code: Nε = 5 (black), Nε = 10
(red), Nε = 15 (green), Nε = 20 (blue), Nε = 25 (yellow).

Figure 3. Unbiased barrier energy ΔF (reference value is ΔF = 2kBT,
dashed black line) as a function of Wε. Systematic errors are of the
order of kBT/100. Color code (plain lines): Nε = 5 (black), Nε = 10
(red), Nε = 15 (green), Nε = 20 (blue), Nε = 25 (yellow).

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500529w | J. Chem. Theory Comput. 2014, 10, 4284−42964287

http://pubs.acs.org/action/showImage?doi=10.1021/ct500529w&iName=master.img-002.jpg&w=315&h=141
http://pubs.acs.org/action/showImage?doi=10.1021/ct500529w&iName=master.img-003.jpg&w=225&h=165


energy at the top of the barrier (ΔF(x = 0) = 2kBT) is reported
for different sets of parameters Nε and Wε. For small values of
Nε it is necessary to increase Wε for obtaining the correct value
of ΔF = 2kBT. With larger Nε, a value of Wε = 0.2 is sufficient,
and further increasing the Gaussian width will result in a less
accurate value for ΔF(x = 0).
In this first application, it is found that the bias introduced by

SA-MC is a powerful feature that can more readily connect
densities in local minima, separated by a barrier which is
difficult to overcome with standard MC sampling. Furthermore,
it is shown that the bias can be accounted for over a certain
system parameter space (Wε and Nε) to faithfully reconstruct
the true, underlying free energy profile. The degree to which
this is possible depends on the system and the parameters
chosen.
3.2. Global Minima of Lennard-Jones Clusters.

Lennard-Jones (LJ) clusters are an ideal class of systems to
which MC-based sampling approaches can be applied. Some of
the problems can be exhaustively sampled whereas others are
computationally too demanding for this. Here, SA-MC is
applied to determine low-energy configurations of LJ clusters of
different sizes. The particular focus for this example is (i)
whether or not the global minimum as known from the
literature is found at all and (ii) the speed with which the global
minimum is found. This also motivates the comparison of
conventional MC and SA-MC in the present context. However,
it should be mentioned that more established algorithms exist
for global optimization.44 LJ clusters are an ensemble of
nonreactive atoms in vacuum (for example noble gases),
interacting only through Lennard-Jones45 potentials

∑ ∑ σ σ= ϵ −
=

−

= +

⎡

⎣
⎢⎢
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥V

r r
4

i

n

j i

n

ij ij

LJ

1

1

1

12 6

(11)

Here, rij is the distance between atoms i and j, ϵ is the depth
of the potential well, and σ the distance at which VLJ = 0. Again,
reduced units are employed, that is, ϵ = σ = 1, and the energy
will be reported in units of ϵ. Extensive previous literature on
these systems is available, and a Web site46 provides a collection
of known structures, lowest minima, and symmetry groups for
clusters ranging from 2 to 1610 atoms: several MC
methods,47−51 quantum calculations,52 MD simulations,53−55

parallel tempering,56,57 or others such as discrete path
sampling58,59 were used for characterizing the systems, and
LJN (with N the number of atoms) clusters became reference
systems for methods dedicated to finding global minima. The
number of local minima grows exponentially as a function of N,
and hence, determining the global minimum of such clusters is
a computationally challenging problem. As an example,
between N = 2 and N = 33 the number of known minima
increases from 1 to ≈4 × 1014. Nevertheless, some recent
studies were able to treat the broken ergodicity and then
provide the correct number of minima for the LJ31 and LJ75
clusters.60

The low energy minima for various LJN clusters were
investigated by both, conventional MC and SA-MC. Specifi-
cally, the systems included N = 13, 19, 31, 38, 55, and 75. Some
of the systems are relatively “easy” while otherssuch as LJ38,
see Figure 4are known to be very challenging (see below).
The methodology applied for all coming examples is as follows:
(i) 104 independent runs are started from the same initial
(random) configuration. (ii) At the end of each step, if the

energy difference relative to the reference configuration is less
than 5ε the system is minimized, and if the known lowest
energy minimum structure is obtained (tolerance of 10−4 × ϵ)
the calculation is stopped and considered as converged;
otherwise, the simulation continues. (iii) If the global minimum
is not reached after a given number of steps (depending of
cluster size) the simulation is considered to be not converged.
For LJ13, the global minimum has an energy of E = −44.327ϵ

(see Table 1). Figure 5 shows a cumulative distribution of the
required number of steps before reaching the global minimum
for conventional MC and SA-MC with different parameters
[Wε;Mε;Nε]. After the 10

6 MC steps considered here, only 24%
of the MC simulations are able to locate the global minimum
energy structure. This compares with between 50% and 98% for
SA-MC, depending on the choice of Mε and Nε. In general, SA-
MC outperforms conventional MC considerably. ForWε = 0.25
and 0.5 a clear improvement is observed, as almost all
simulations converge before 2.5 × 105 steps. Results are
particularly noteworthy with Wε = 0.5 for which 98% of the
simulations converged during the first 105 steps. For Wε = 1.0
the convergence speed slows down. One explanation is that
depending on the value for Wεtypically the larger Wε the
flatter the FESthe SA-MC-modified densities become too
connected which changes the topology of the FES such as to
slow down convergence. Nevertheless, this may be corrected by
using increased values of Mε and Nε, which leads to variance
reduction. However, the computational time would also
increase.
The previous conclusions are supported by an analysis of the

median of the number of steps for converged simulations, that
is, the value for which 50% of the calculations reach the
minimum energy structure. For conventional MC, this value is
3.3 × 105 compared to 6 × 104, 2 × 104, and 3 × 105 for SA-
MC with [0.25;5;5], [0.5;5;5], and [1.0;5;5], respectively.
Hence, for the best performing SA-MC simulation, the average
number of steps required to reach the global minimum is
smaller by a factor of 30 compared to conventional MC. It is
also possible to determine the rate at which the various
simulations converge by fitting the cumulative successful runs
to an empirical relationship y = d tanh ((ax + b)/d) where d
describes the asymptotic convergence (plateau of the number
of converged simulations, ideally 10000) and a describes the
growth of the first part of the curve (i.e., how rapidly the

Figure 4. Lowest energy configurations found for the LJ38 atoms,
obtained with SA-MC. The structure in panel a has an energy of E =
−171.357ϵ (see Table 1) whereas the structure in panel b is that of the
absolute minimum (E = −173.928ϵ) found when starting from the
cluster LJ37 and randomly adding an atom. Red atoms are closer to the
center of mass of the cluster than gray and blue ones.
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plateau is reached). The parameter b ensures that the fit passes
through the origin. For conventional MC, a = 1.2 compared
with 5.6, 48.2, and 1.6 from SA-MC, which quantifies the above
observations about the median. For parameter d, the fit yields
2400, 8700, 9700, and 6200 for the four simulations. This,
together with the observations for parameter a suggests that the
rate of successful runs for the worst SA-MC simulation is still
better than that of conventional MC whereas the number of
successful runs is larger by a factor of 3. On the other hand, the
best performing SA-MC simulation is about 30 times as
efficient while finding at the same time the global minimum in
almost all simulations (98%).
The computational overhead in using SA-MC is in the

Mε × Nε additional energy evaluations which, however, can be
easily parallelized. In the present case, a factor of 5 × 5 = 25 is
expected for a given number of MC steps (here 106). If all 104

simulations are run for 106 MC steps, SA-MC with [0.5;5;5] is
23-times slower than conventional MC. However, if simulations
are terminated when the lowest minimum is found, this reduces
to a factor of 1.2. Hence, in cases where suitable termination
criteria can be found, the computational overhead of SA-MC is
well below an order of magnitude compared to conventional
MC with the added value of the much increased likelihood for
locating the correct lowest energy configuration.
For the larger LJ clusters, Metropolis MC simulations have

difficulties in successfully locating the known minima at all. In
order to assess the performance of SA-MC for such cases,
additional simulations were carried out for LJ19, LJ31, LJ38, LJ55,
and LJ75. The same procedure as before is used except for the
total number of MC or SA-MC steps, which was increased to

109 for larger clusters. For LJ19, the convergence speed analysis
gives results similar to those presented in Figure 5; that is,
SA‑MC reaches the global minimum (energy −75.659ϵ, see
Table 1) in much fewer steps than regular Metropolis, when
using 106 steps. The LJ55 and LJ75 are much larger systems and
Metropolis sampling is extremely slow to obtain converged
results. Table 1 shows that for LJ55 MC and SA-MC converge
to the reference value from the literature, the convergence rate
for MC is 15.8% with a median number step required of
7.6 × 107 (the maximal number of steps being 108), and for
SA-MC the numbers are 65% and 5.4 × 106, respectively, that
is, one order of magnitude faster when just considering the
number of steps. For LJ75, conventional MC sampling is unable
to locate the global minimum within 108 steps. On the contrary,
SA-MC does find this minimum for 28% of the simulations
within a median number of steps of 5.1 × 107.
The LJ31 and LJ38 clusters are known for their funneled

energy landscape.47,49,58,61,62 LJ38 is a particularly interesting
system as it has a double-funnel landscape, one ending in the
global minimum, the other in the second minimum. Doye et al.
showed with disconnectivity graphs49,50 that 446 minima are
related to the second funnel but only 28 to the first one, making
the transition from one funnel to the other extremely rare. With
108 MC steps, our implementation of the Metropolis algorithm
was unable to converge to the lowest known minimum for both
clusters, which are at −133.586ϵ and −173.928ϵ, respectively,
see Table 1. The best configurations sampled in this set of
simulations are still 6ϵ and 13ϵ higher in energy than the
known minima. Contrary to that, SA-MC successfully
converged for the LJ31 cluster (see Table 1) with similar sets
of parameters as for LJ13, but for LJ38 (Figure 4a) the best
energy obtained is still 2.5ϵ too high (−171.357ϵ compared to
−173.928ϵ, cf. Table 1). A second set of 10 000 simulations for
the LJ38 cluster was carried out with 10 times more Monte
Carlo steps (109 instead of 108, see Table 1 line 38(b)). In this
case, both MC and SA-MC find the known minimum energy
structure47,49,61 for 3 and 35% of the simulations, respectively.
A final set of 10 000 simulations for the LJ38 cluster was

carried out using a slightly different approach: instead of
starting from a fully random initial configuration, the lowest
minimum of the LJ37 cluster (which was successfully found by
SA-MC) was employed and randomly a 38th atom was added
to the system. Then, simulations were run for 5 × 107 steps.
The lowest energy obtained from the Metropolis algorithm is
then −170.807ϵ, which is considerably closer to the best
minimum with fewer MC steps (see 38(a) versus 37 + 1 in
Table 1), and −173.928ϵ for SA-MC, which is the correct

Table 1. Minimum Energy Configurations (in Units of ϵ) for All LJ Clusters Studied, and Best Convergence Rates Observed, for
MC and SA-MCa

LJN Eref
47 EMC ESA‑MC steps conv. MC (%) conv. SA-MC (%)

13 −44.326 −44.326 −44.326 106 24 98
19 −75.659 −75.659 −75.659 106 22 97
31 −133.586 −126.081 −133.586 108 26
38(a) −173.928 −160.556 −171.357 108

38(b) −173.928 −173.928 −173.928 109 3 35
37 + 1 −173.928 −170.807 −173.928 5 × 107 6
55 −279.248 −279.248 −279.248 108 16 65
75 −397.492 −381.173 −397.492 108 28

aReference values are from the literature.47 Numbers in bold face are unconverged values. The “steps” column indicates how long were both MC and
SA-MC simulations. What differs between 38(a) and 38(b) is the number of steps. 37 + 1 means that the starting point is the lowest energy
geometry of LJ37 to which a 38th atom is included.

Figure 5. Convergence analysis for MC (black), and SA-MC
simulations with different sets of parameters [Wε;Mε;Nε]: [0.25;5;5]
(red), [0.5;5;5] (green), and [1.0;5;5] (blue).
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minimum energy structure (Figure 4b). Overall, it is found that
SA-MC successfully converges to the global minimum for all
the studied LJN clusters, including both funneled clusters (LJ38)
and larger clusters such as LJ75.
3.3. Blocked Alanine Dipeptide in Implicit and Explicit

Water. The blocked alanine dipeptide (Ac−Ala−N−H−Me,
Figure 6) has been used as a test system for computational

studies63−79 of conformational equilibria and free energy
landscape reconstruction and analysis. This dipeptide contains
many of the structural features of proteins, including the two
(ϕ, ψ) dihedrals angles, NH and CO groups capable of H-bond

formation, and a methyl group attached to the Cα atom.
Successful studies used quantum chemistry, MD and MC
simulations, and several conformations were identi-
fied:63,64,67,68,70,79 (i) β, also called C5, for (ϕ, ψ) ∼ (−140°,
150°), (ii) C7eq for (ϕ, ψ ∼ −90°, 80°), (iii) αR (right-handed α
helix) for (ϕ, ψ) ∼ (−80°, −60°), (iv) αL (left-handed α helix)
for (ϕ, ψ) ∼ (60°, 60°) and (v) C7ax for (ϕ, ψ) ∼ (60°, −60°).
One suitable way to visualize the free energy landscape for the
conformations and the transitions between them is to report an
energy surface as a Ramachandran plot.80 Simulations for the
blocked alanine dipeptide were carried out both in implicit
(Analytical Continuum Electrostatics (ACE)40,41) and explicit
solvent (TIP3P42 water). ACE is known for providing a
meaningful description of solvation effects for peptides.17,67,81,82

In the following, results from simulations with ACE are first
described. Next, the simulations in explicit water are
summarized.
Initially, two reference simulations were carried out. They

included an MD and a Metropolis MC simulation and served as
benchmarks with which to compare the SA-MC simulations.
For the latter simulations with a range of parameters
[Wε;Mε;Nε] were carried out. In all cases, the blocked alanine
dipeptide is treated in a united atom representation (12 atoms,
see Figure 6), nonbonded interactions are fully calculated, and

Figure 6. Blocked alanine dipeptide (Ac−Ala−N−H−Me), and the
two dihedral angles of interest Φ (C−N−Cα−C) and Ψ (N−Cα−C−
N).

Figure 7. FES of alanine dipeptide: (A) MD, 1.5 μs, 300 K; (B) Metropolis MC, 100 × 106 steps, 300 K; (C) biased SA-MC with parameters
[0.5;5;5]; (D) unbiased SA-MC (same parameters), 5 × 106 steps, 300 K. All free energies are reported relative to the C7eq minimum.
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the temperature is 300 K in the NVT ensemble. For
simulations with the ACE implicit solvent, default parameters,
such as Born solvation radii, dielectric constants, and atomic
volumes, are taken from the literature.40,41 The MD simulations
use the velocity Verlet integrator with the Nose−́Hoover
thermostat for a simulation time of 1.5 μs, a cutoff of 12 Å and
a time step of Δt = 0.5 fs. The MC simulation was run for 108

steps. For SA-MC, simulations with several parameter sets were
carried out: (i) Wε ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0},
(ii) Mε ∈ {5, 10, 15, 20}, and (iii) Nε ∈ {5, 10, 15, 20}. Mε and
Nε = 5 or 10 proved to be sufficient for the present purpose
(there is no gain with larger parameters justifying the
overhead). Here, results for Nε = 5 are presented.
Simulations in Implicit Solvent. Figure 7 shows the

Helmholtz Free Energy Surfaces (FES) for both MD (A) and
the Metropolis (B) simulations. It is first observed that both
surfaces are quite similar to each other and closely resemble
those obtained previously in the literature using the same
computational setup.67,79 The data reported in Figures 7A and
B already indicate that the barrier regions between the basins
are not well sampled. This is true in particular for the MD
simulations. The four following regions (see labels in Figure 7)
are sampled sufficiently for providing an estimate of the
associated free energy differences: (i) C7eq (top left basin of
lowest energy), (ii) αR (bottom left), (iii) C7ax (bottom right),
and (iv) αL (top right). Positions and estimates for the free
energy for those four minima are summarized in Table 2. A

95% statistical confidence interval is provided (see previous
description of the bootstrapping procedure) for MC, MD, and
SA-MC simulation. The fact that this error is somewhat larger
for SA-MC than for MC is caused by the additional error
introduced by the unbiasing step of SA-MC (eq 8).
Nevertheless, when considering higher energy minima as C7ax
and αL, this value is several times lower than the error estimated
for the MD case, where the poor sampling causes an error of
0.32 kcal/mol. Furthermore, the highest error estimated for
SA-MC is only 0.09 kcal/mol. It is also of interest to briefly
comment on the effect of using bootstrapping for error

estimation. For example, directly using eq 9 without boot-
strapping leads to an error of 0.18 kcal/mol for the αL structure
with SA-MC, which is reduced to 0.09 kcal/mol when using
bootstrapping.
Figure 7C shows the FES from simulations with the SA-MC

algorithm, with parameters Wε = 0.5 and Mε = Nε = 5 whereas
panel D reports the unbiased FES from the same data.
Compared to the MD and conventional MC simulations, SA-
MC leads to a much improved sampling of the valley around
Φ = 75°, and more specifically the two saddle points
connecting the left and right parts of the FES. Such transitions
are typically rare events in Metropolis MC but rather well
sampled within SA-MC. Differences between the biased and
unbiased SA-MC FESs are minor. On the biased FES (Figure 7
C), SA-MC lowers barriers by ≈1.2 kcal/mol, which means that
the corresponding states are better sampled.
Numerical values for the relative free energy values of the

minima and at the top of the barriers are summarized in Table
3. First, it is observed that the current MD and MC simulations

only partially sample the FES compared to previous targeted
MD simulations64 and the SA-MC simulations. On the other
hand, SA-MC and the reference simulations64 sample similar
amounts of the available configuration space. In general, the
location of the minima and their energy is similar to that found
from previous work.63,65,67,68 The C7eq minimum is the most
stable state on the FES for all types of simulations, followed by
αR. Its relative stabilization energy compared to the global
minimum is ≈0.2 kcal/mol from unbiased SA-MC, which
compares with 0.7 kcal/mol64 and above 1 kcal/mol from MD
and MC simulations.
The relative stability of the C7ax and αL structures from

unbiased SA-MC are close to the MD simulations and differ by
about 1 kcal/mol from reference simulations in the
literature.64,67 This suggests, that SA-MC in the present case
is a suitable method to locate stable and metastable states on
the FES with high confidence but that the quality of the
unbiasing depends somewhat on the state considered.
It is also interesting to consider the energy at the top of the

barriers separating two stable conformations. This information
is summarized in Table 3. In general, the unbiased SA-MC data
follow those from previous simulations.64 Typically, the

Table 2. Relative Free Energies (kcal/mol) and Minima
Locations for the Blocked Alanine Dipeptide at 300 K, for
MD, MC, SA-MC Simulations, and Three External
References,64,67,79 All Using the ACE Implicit Solvent
Modela

methods

basin ΔF MD ΔF MC ΔF SA-MC position (Φ, Ψ)

C7eq 0.00 ± 0.01 0.00 ± 0.02 0.00 ± 0.07 (−83°, 136)
αR 1.10 ± 0.03 1.16 ± 0.04 0.21 ± 0.06 (−79°, −42°)
C7ax 3.26 ± 0.16 2.91 ± 0.12 3.11 ± 0.08 (67°, −75°)
αL 4.62 ± 0.32 4.86 ± 0.36 4.12 ± 0.09 (47°, 55°)

references

basin ΔF ref 64 ΔF ref 67 ΔF ref 79

C7eq 0.00 0.00 0.00
αR 0.71 1.5 0.93
C7ax 4.34 4.1 2.94
αL 4.35 5.0 4.27

aThe statistical error was estimated using bootstrapping described
previously, and ± values represent a 95% confidence interval. All free
energies are shifted relative to the C7eq structure which is the reference
energy.

Table 3. Comparison of ΔF from (a) MD, (b) Unbiased
Targeted MD Simulations,64 (c) MC, and (d) SA-MCa

(a) MD (b) ref 64

C7eq αR C7ax αL C7eq αR C7ax αL

C7eq 0.0 3.25 0.0 2.61 6.47
αR 3.25 1.10 2.61 0.71 6.88
C7ax 3.26 6.88 4.34 5.98
αL 4.62 6.47 5.98 4.35

(c) MC (d) SA-MC

C7eq αR C7ax αL C7eq αR C7ax αL

C7eq 0.0 3.37 0.0 1.96 5.08
αR 3.37 1.16 1.96 0.21 4.91
C7ax 2.91 5.66 4.91 3.11 4.20
αL 5.66 4.86 5.08 4.20 4.12

aDiagonal entries from Table 2 are stabilization energies relative to the
global minimum C7eq, whereas off-diagonal entries refer to the barriers
between the minima. Empty cells indicate that the direct transition was
not observed or is not possible. All free energies are reported relative
to the C7eq structure, which is the reference energy.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500529w | J. Chem. Theory Comput. 2014, 10, 4284−42964291



transition barriers are lower by about 1 kcal/mol but all
orderings of the barriers agree with the data from the literature.
Figure 8 shows slices through the FESs from Figure 7

together with cuts from parallel tempering and infinite
swapping simulations using the same setup of the systems,17

for Φ = −100° and Φ = −60°, (left panels) and Ψ = −60° and
Ψ = 80° (right panels). For the cut at ϕ = −100°, the
topography of the FES from SA-MC is similar to all four other
methods although quantitatively differences can be up to
1 kcal/mol for barriers and more for the secondary minimum.
For the other three cuts, it is noted that there are much fewer
unsampled regions (spikes) when using SA-MC than compared
to any other method. Again, the unbiased SA-MC results
underestimate the barriers and overstabilize the metastable
states. However, from a sampling perspective SA-MC is clearly
superior to MC: with 20 times fewer steps (5 × 106 for SA-MC
against 100 × 106), for a similar CPU time usage, and transition

regions are considerably more sampled with SA-MC than for
MD, MC, and PT simulations.
Figure 9 shows slices through the same FES as in Figure 8,

that is, for ϕ = −100°, but reports results from simulations with
different sets of SA-MC parameters: [0.1;10;10] (left) and
[0.1;10;15] (right). It is apparent that the choice of SA-MC
parameters influences the results. The data reported in Figure
9a better reproduces the reference simulations than the data in
Figure 9b.

Simulations in Explicit Solvent. Sampling the free energy
landscape of blocked alanine dipeptide in explicit water is
computationally much more challenging.83−86 The present
system consists of 462 water molecules to which SHAKE
constraints87 are applied and one blocked (Ala)2. The
nonbonded cutoff parameter is 12 Å. Figure 10 reports the
2-dimensional FES obtained from 108 steps of SA-MC
simulations with parameters [0.1;5;5] and Figure 11 reports

Figure 8. Slices through the FES from Figure 7 for MD (black), MC (red), SA-MC biased (dashed green), SA-MC unbiased (green), parallel
tempering17 (blue), and infinite swapping17 (orange). SA-MC parameters are [0.5;5;5].

Figure 9. Slices through the FES, showing the influence of SA-MC parameters [Wε;Mε;Nε] on the biased and unbiased SA-MC energy profiles. SA-
MC parameters are [0.1;10;10] (left) and [0.1;10;15] (right). MD (black), MC (red), SA-MC biased (dashed green), SA-MC unbiased (green),
parallel tempering17 (blue), and infinite swapping17 (orange) are shown as separate curves. Free energy is shifted in order to have a value of 0.0 for
the C7eq minimum.
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slices (for Φ = −100° and Φ = −60°, (left panels) and Ψ =
−60° and Ψ = 80° (right panels)) through the FES of Figure
10 for SA-MC. The overall topology of the FES in implicit and
explicit solvent is similar. However, it is noted that the
transition between C7eq and αR is considerably wider in explicit
water. Table 4 shows the energy estimated for the four known
minima of the FES of Figure 10. Data from simulations with
ACE are also included for comparison. The reference data is
from refs 64 and 88, which was determined from MD
simulations with both explicit solvent and a Generalized Born
implicit solvent, and error bars represent a 95% confidence
interval.

It is found that the C7eq minimum is still the most stable
state, followed by αR, C7ax, and αL. However, the relative
stabilizations are somewhat altered in that αR is destabilized
relative to C7eq whereas C7ax and αL are somewhat stabilized.
Comparison with literature data shows that for the simulations
in explicit solvent the present results agree favorably for C7eq,
αR, αL, and for C7ax when available (see ref 64). It should be
noted that no numerical values are provided in ref 88, and the
numbers reported here have been inferred from the graphical
illustrations (not possible for C7ax). Comparison with ref 64,
which also provided values for simulations with the ACE
model, shows good agreement with results obtained with SA-
MC; however, once again, it appears that the αR minimum is
somewhat overstabilized when using SA-MC.

4. CONCLUSIONS AND OUTLOOK
In the present work, a practical and comprehensive
implementation for spatial averaging MC (SA-MC) simulations
into the CHARMM general purpose atomistic simulation

Figure 10. Unbiased FES for SA-MC from simulations of blocked
alanine-dipeptide in explicit TIP3P water and with SA-MC parameters
[0.1;5;5]. The number of steps is 100 × 106 steps. All free energies are
reported relative to the C7eq minimum.

Figure 11. Slices through the FES from Figures 7 and 10: unbiased SA-MC with ACE (green), unbiased SA-MC with TIP3P (violet). All values are
reported relative to the C7eq minimum.

Table 4. Free Energies (in kcal/mol) Relative to the C7eq
Minimum from SA-MC (ACE), SA-MC (TIP3P) Simulations
Compared to Reference Data from the Literature, Which
Employed Umbrella Sampling in Explicit Solvent64,88a

methods and references

basin
SA-MC
(ACE)

SA-MC
(TIP3P) ref 88 ref 64 position (Φ, Ψ)

C7eq 0.00 ± 0.07 0.00 ± 0.08 0.00 0.0 (−83°, 136°)
αR 0.21 ± 0.06 1.20 ± 0.07 1.30 1.41 (−79°, −42°)
C7ax 3.11 ± 0.08 2.99 ± 0.08 NA 3.85 (−67°, −75°)
αL 4.12 ± 0.09 3.60 ± 0.10 3.80 4.38 (47°, 55°)

aFor C7ax no data are available from ref 88. The statistical error in the
present work was estimated from bootstrapping and ± values
represent a 95% confidence interval.
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program has been described. Also, an unbiasing procedure is
discussed which allows to estimate thermodynamic observables.
The implementation and unbiasing strategy are validated for
model and topical systems including the double well potential,
Lennard-Jones clusters and the blocked alanine dipeptide in
implicit and explicit solvent. The considerably increased
efficiency for exploring configuration space has been demon-
strated for all three applications. However, the degree to which
this is possible depends on the properties and connectivity of
the systems’ conformational space, which is usually a priori
unknown. The central asset of SA-MC is that it generates a
more highly connected ensemble, which makes exploration of
the underlying free energy surface more readily possible.
It is expected that SA-MC can be beneficial for a range of

future applications. As already indicated, SA-MC can be used to
efficiently explore configurational space, based on which
unbiased free energy surfaces can be obtained from the
spatially averaged distribution. Furthermore, SA-MC is well
suited to approximately locate transition states and to
characterize the transition state ensemble.89,90 This is the
starting point for enhanced exploration of barrier-crossing
problems in more complex systems (such as small solvated
peptides or proteins), which is typically difficult to achieve from
standard MC or MD simulations. Given that SA-MC primarily
connects neighboring metastable states, which are usually
separated by barriers of a few kBT, we expect SA-MC to
perform well for such problems as was already demonstrated
for the solvated dipeptide in the present work. Also, SA-MC
can be employed to find approximate reaction coordinates,
which is useful for subsequent umbrella sampling simulations.7

Finally, SA-MC could be employed together with Hamiltonian
replica exchange molecular dynamics simulations (H-
REMD).91 Hamiltonian replica exchange can be used for
studying several types of problems, but in practice, its
performance depends substantially on the details of the biased
Hamiltonian. Similar to combining umbrella sampling simu-
lations with H-REMD,92 employing SA-MC together with H-
REMD could be potentially beneficial and provide a systematic
way to generate biased Hamiltonians.
A common characteristic of all MC methods is that

simulation parameters such as the move range, the acceptance
ratio, or the swapping rate need to be optimized to some extent
to obtain computational performance. This is also the case for
SA-MC. One future improvement for the SA-MC algorithm is
therefore to facilitate finding optimized sets of parameters
[Wε;Mε;Nε] during the simulation. It is not necessary to use the
same values for each of the MC steps because of the
Markovianity of the procedure. The examples investigated
here in more detail emphasize that larger values of the system
parameters enhance the sampling of barriers and transition
states at the cost of extra computational time. Hence, another
possible improvement concerns the decrease of those
parameters for regions well sampled by the MC algorithm for
speeding up the sampling, and to increase them for poorly
sampled regions, possibly during the simulation by using an
“on-the-fly” optimization technique. This will be important for
applying efficiently the SA-MC algorithm to larger systems.
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